检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
多标签的标签文件示例,如2.txt文件内容如下所示: Cat Dog 只支持JPG、JPEG、PNG、BMP格式的图片。单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 物体检测 支持两种格式: ModelArts PASCAL VOC 1.0 物体检测的简易模
确保OBS中的文件是非加密状态 上传图片或文件时不要选择KMS加密,否则会导致数据集读取失败。文件加密无法取消,请先解除桶加密,重新上传图片或文件。 图3 OBS桶中的文件未加密 检查图片是否符合要求 目前自动学习不支持四通道格式的图片。请检查您的数据,排除或删除四通道格式的图片。 检查标注框是否符合要求(物体检测)
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
能包含!<>=&"'特殊字符。 export_images 否 Boolean 发布时是否导出图片到版本输出目录。可选值如下: true:导出图片到版本输出目录 false:不导出图片到版本输出目录(默认值) remove_sample_usage 否 Boolean 发布时是否
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
创建预测分析自动学习项目时,对训练数据有什么要求? 使用从OBS选择的数据创建表格数据集如何处理Schema信息? 物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 父主题: Standard自动学习
--image-input-shape:输入图片维度,当前不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下:
详细请参见: 标注图片(图像分类) 标注图片(物体检测) 标注文本(文本分类) 标注文本(命名实体) 标注文本(文本三元组) 标注音频(语音分割) 在标注页面中,每个成员可查看“未标注”、“待确认”、“已驳回”、“待审核”、“审核通过”、“验收通过”的图片信息。请及时关注管理员驳回以及待修正的图片。
AI应用封面图 否 上传一张AI应用封面图,AI应用创建后,将作为AI应用页签的背景图展示在AI应用列表。建议使用16:9的图片,且大小不超过7MB。 如果未上传图片,AI Gallery会为AI应用自动生成封面。 应用描述 否 输入AI应用的功能介绍,AI应用创建后,将展示在AI应用页签上,方便其他用户了解与使用。
描述 add_sample_count Integer 处理后新增的图片数量。 create_time Long 数据处理任务的创建时间。 deleted_sample_count Integer 处理后删除的图片数量。 description String 数据处理任务的版本描述。
选择“form-data”。在“KEY”值填写模型的入参,和在线服务的输入参数对应,比如本例中预测图片的参数为“images”。然后在“VALUE”值,选择文件,上传一张待预测图片(当前仅支持单张图片预测),如图4所示。 图4 填写Body 文本输入 选择“raw”,选择JSON(appl
odelArts会自动识别导致作业失败的原因,在训练日志界面上给出提示。提示包括三部分:失败的可能原因、推荐的解决方案以及对应的日志(底色标红部分)。 图1 训练故障识别 ModelArts Standard会对部分常见训练错误给出分析建议,目前还不能识别所有错误,提供的失败可能
带controlnet时需要,此时image_path需要赋值null,传入图片的base64编码值,非必选 image_base64 带controlnet时需要,和image_path二选一,传入图片的base64编码值,非必选 父主题: AIGC模型训练推理
在线服务的API接口组成规则是什么? AI应用部署成在线服务后,用户可以获取API接口用于访问推理。 API接口组成规则如下: https://域名/版本/infer/服务ID 示例如下: https://6ac81cdfac4f4a30be95xxxbb682.apig.xxx
例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
通过人工标注方式标注数据 创建ModelArts人工标注作业 人工标注图片数据 人工标注文本数据 人工标注音频数据 人工标注视频数据 管理标注数据 父主题: 标注ModelArts数据集中的数据
--image-input-shape:输入图片维度,当前不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下:
Flavor object 训练资源规格。 image_brightness Boolean 是否通过图片亮度来聚类。 image_colorfulness Boolean 是否通过图片色彩来聚类。 inf_cluster_id String 专属集群ID,默认为空,不使用专属集群;
csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行
csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行