检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
多轮对话 支持上下文记忆的多轮对话。 初始化 from pangukitsappdev.skill.conversation_skill import ConversationSkill from pangukitsappdev.api.llms.factory import LLMs
长文本摘要 场景介绍 切割长文本,利用大模型逐步总结。 如对会议/报告/文章等较长内容总结概述。 工程实现 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # IAM 认证信息,根据实际填写 sdk.llm.pangu.iam.url= sdk.llm
Agent流式输出 Agent用于工具调用场景,与普通的LLM流式输出相比,区分了文本流与工具流。文本流将输出模型的思考过程和最终结果;工具流将输出工具的调用过程,而工具的调用的执行结果是通过监听获取的。 通过如下接口为Agent添加流式输出的回调: from pangukitsappdev
调用边缘模型 调用边缘模型的步骤与使用“在线部署”调用模型的步骤相同,具体步骤请参考使用API调用模型。 父主题: 部署为边缘服务
长文本摘要 场景介绍 切割长文本,利用大模型逐步总结。 如对会议/报告/文章等较长内容总结概述。 工程实现 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # IAM 认证信息,根据实际填写 sdk.llm.pangu.iam.url= sdk.llm
*/ private String finalAnswer = ""; /** * 本次session的用户query */ private List<ConversationMessage> messages; /**
toolDesc = "通过用户ID、用户单据、用户最大报销比例获取用户报销额度", toolPrinciple = "请在有用户ID、用户单据、用户最大报销比例的情况下查询用户最大报销额度时调用此工具。需要先分别调用query_receipt工具查询用户单据和query_reim
Agent运行Session,包含历史Action,当前Action,状态 Attributes: messages: 本次session的用户的输入 session_id: UUID,在一个session内唯一 current_action: 当前Action
Agent流式输出 Agent用于工具调用场景,与普通的LLM流式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback
Provider的原理为将完整的工具存入内存,再根据工具检索的结果(toolId)将其从内存中取出。一般来说,ToolProvider将由用户自定义,将在后续示例中说明。 此外,上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此
content="4点结束,线上会议")] agent.run(messages) 运行结果示例: 用户: 定个2点的会议 助手: 请问您的会议预计何时结束?另外,您是需要预订线上会议还是实体会议室? 用户: 4点结束,线上会议 助手: 已为您预定2023年6月29日14:00至16:00的线上会议,请准时参加。
期结束。为了说明用户反馈的功能,选择了调用setUserFeedback,进行反馈,第四次printPlan打印的结果为: 用户: 定个2点-4点的会议 助手: 好的,请问您想预定哪一个会议室? - 步骤1: 思考:好的,请问您想预定哪一个会议室? 用户: A01会议室 助手:
rovider的原理为将完整的工具存入内存,再根据工具检索的结果(tool_id)将其从内存中取出。一般来说,ToolProvider将由用户自定义,后续会有例子说明。 上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此工具入库
自定义模型 如果使用的模型不是盘古或者兼容OpenAI-API的开源模型,如,闭源模型或者裸机部署的自定义推理服务,可以通过继承AbstractLLM自定义一个模型,示例代码如下: @Slf4j public class CustomLLM extends AbstractLLM<LLMResp>
模型训练所需数据量与数据格式要求 盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1G
注册边缘资源池节点 进入ModelArts服务,选择所需空间。 在左侧列表中单击“边缘资源池”,在“节点”页签中,单击“创建”。 在“创建边缘节点”页面中,填写节点名称,配置AI加速卡与日志信息,单击“确定”。 如果节点有npu设备需选择“AI加速卡 > Ascend”,并选择加速卡类型。
如何调用REST API 开通API 构造请求 认证鉴权 返回结果
附录 状态码 错误码 获取项目ID 获取模型调用API地址
从基模型训练出行业大模型 打造短视频营销文案创作助手 打造政务智能问答助手 基于NL2JSON助力金融精细化运营
提示词写作实践 提示工程介绍 常用方法论 进阶技巧 写作示例