检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
注意:权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer
权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer
通过OBS对象存储服务(Object Storage Service)与SFS Turbo文件系统联动,可以实现灵活数据管理、高性能读取等。 约束限制 如果要使用自动重启功能,资源规格必须选择八卡规格。 适配的CANN版本是cann_8.0.rc3,驱动版本是23.0.6。
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
同时创建Prometheus所使用的账号(ServiceAccount),将账号与角色进行绑定(ClusterRoleBinding)。
ModelArts用户指南(Lite Cluster) ModelArts Edge 为客户提供了统一边缘部署和管理能力,支持统一纳管异构边缘设备,提供AI应用部署、Al应用和节点管理、资源池与负载均衡、应用商用保障等能力,帮助客户快速构建高性价比的边云协同AI解决方案。
通过OBS对象存储服务(Object Storage Service)与SFS Turbo文件系统联动,可以实现数据灵活管理、高性能读取数据等。
# run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建AI应用时填写与您镜像中相同的启动命令。
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
如果已存在可用的桶,需确保OBS桶与ModelArts在同一区域。 参考上传文件,将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。
AI Gallery在原有Transformers库的基础上,融入了对于昇腾硬件的适配与支持。对AI有使用诉求的企业、NLP领域开发者,可以借助这个库,便捷地使用昇腾算力进行自然语言理解(NLU)和自然语言生成(NLG)任务的SOTA模型开发与应用。
rank id为本次训练作业的全局NPU卡编号,取值为0~实例数*卡数-1,单个实例下,rank id与device id取值相同。
在对后端实现比较理解的情况下,建议针对具体的功能进行Diffusers模块的适配与替换,然后针对替换上去的Diffusers,对其pipeline进行昇腾迁移适配,进而替代原有WebUI的功能。针对很多参数以及三方加速库(如xformers)的适配,当前没有特别好的处理方案。
total_count Integer 当前查询结果的数量,不设置offset、limit查询参数时,count与total相同。 engine_runtimes Array of EngineAndRuntimesResponse objects 引擎运行环境。
# run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。
可通过以下方式使用指定的“conda env”启动训练: 方式一:为镜像设置正确的“DEFAULT_CONDA_ENV_NAME”环境变量与“ANACONDA_DIR”环境变量。
请确保协议和端口号与自定义镜像中提供的协议和端口号保持一致。 镜像复制:选填,选择是否将容器镜像中的模型镜像复制到ModelArts中。 健康检查:选填,用于指定模型的健康检查。仅当自定义镜像中配置了健康检查接口,才能配置“健康检查”,否则会导致模型创建失败。
“架构”和“类型”根据实际情况选择,与镜像源保持一致。 创建Notebook并使用 镜像注册成功后,即可在ModelArts控制台的“开发环境 > Notebook”页面,创建开发环境时选择该自定义镜像。 打开开发环境。
# 预训练输出权重 |── tokenizer #tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── model #原始权重与tokenizer
与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部分参数训练、LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA。