检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
0.1。 --port:服务端口,和推理服务端口8080。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
时,会根据您启用的探针显示对应探针的参数设置情况。 启动探针:用于检测应用实例是否已经启动。如果提供了启动探针(startup probe),则禁用所有其他探针,直到它成功为止。如果启动探针失败,将会重启实例。如果没有提供启动探针,则默认状态为成功Success。 就绪探针:用于
0.0.1。 --port:服务端口,和推理服务端口8080。 --url:若以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;若以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step6 启动推理服务,在启动服务时添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step6 启动推理服务,在启动服务时添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化
要创建,当前需要集群有Spark组件,安装时,注意勾选上。 您可以使用MrsStep来创建作业类型节点。定义MrsStep示例如下。 指定启动脚本与集群 from modelarts import workflow as wf # 通过MrsStep来定义一个MrsJobStep节点,
{type:"string"} import os ENV_NAME=os.getenv('ENV_NAME') # 启动训练任务:使用user_command(shell命令)方式启动训练任务 # 注意:训练启动默认的工作路径为"/home/ma-user/modelarts/user-job-dir",而代码上传路径为"
在标注作业列表中,选择“物体检测”或“图像分类”类型的标注作业,单击标注作业名称进入“标注作业详情页”。 在数据集详情页的“全部”页签中,单击“自动分组 > 启动任务”。 只能在“全部”页签下启动自动分组任务或查看任务历史。 在弹出的“自动分组”对话框中,填写参数信息,然后单击“确定”。 “分组数”:填写2~200之间的整数,指将图片分为多少组。
/etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward 步骤二:启动镜像 启动容器镜像,推理只需要启动单卡,启动前可以根据实际需要增加修改参数。 export work_dir="自定义挂载的工作目录" export conta
的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train.sh 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。
0.1。 --port:服务端口,和推理服务端口8080。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。
的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_finetune_train.sh 启动SDXL Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。
# 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本 |──llama2 # llama2系列模型执行脚本的文件夹
# 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本 |──llama2 # llama2系列模型执行脚本的文件夹
me/ma-user/sdxl-train/user-job-dir/目录下,覆盖容器中原有的code目录。 启动命令:将华为侧优化后代码文件复制到工作目录后,运行启动脚本文件diffusers_sdxl_lora_train.sh。 cd /home/ma-user/sdxl-
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
ge_url}参见镜像地址获取。 docker pull {image_url} 步骤3 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂
打开一个新的Terminal终端,进入“/home/ma-user/infer/”目录,运行启动脚本run.sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。启动命令如下: sh run.sh 图6 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。 图7 手写数字图片
_url}参见镜像地址获取。 docker pull {image_url} Step3 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂