检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
deleteConvert 服务管理支持审计的关键操作列表 表5 服务管理支持审计的关键操作列表 操作名称 资源类型 事件名称 部署服务 service addService 删除服务 service deleteService 更新服务 service updateService 启停服务 service
在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“计算节点规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“计算节点个数”。 如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。
├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。
批量服务输入/输出obs目录不存在或者权限不足 问题现象 输入输出目录不存在,报如下错误 "error_code": "ModelArts.3551", "error_msg": "OBS path xxxx does not exist." 当访问目录权限不足时,报如下错误 "error_code":
在遇到资源不足的情况时,ModelArts会进行三次重试,在服务重试期间,如果有资源释放出来,则服务可以正常部署成功。 如果三次重试后依然没有足够的资源,则本次服务部署失败。参考以下方式解决: 如果是在公共资源池部署服务,可等待其他用户释放资源后,再进行服务部署。 如果是在专属资源池部署服务,在满足模型需求的前提下
} } } }] apis定义提供模型对外Restfull api数据定义,用于定义模型的输入、输出格式。 创建模型填写apis。在创建的模型部署服务成功后,进行预测时,会自动识别预测类型。 创建模型时不填写apis。在创建的模型部署服务成功后,进行预测,需选择“请求
IEF节点边缘服务部署失败 问题现象 部署边缘服务时,出现“异常”状态。 原因分析1 部署边缘服务时,使用到IEF纳管的边缘节点,就需要用户给ModelArts的委托赋予Tenant Administrator权限,否则将无法成功部署边缘服务。具体可参见IEF的权限说明。 处理方法1
出现了ModelArts“代表”用户去访问其他云服务的情形。从安全角度出发,ModelArts代表用户访问任何云服务之前,均需要先获得用户的授权,而这个动作就是一个“委托”的过程。用户授权ModelArts再代表自己访问特定的云服务,以完成其在ModelArts平台上执行的AI计算任务。
企业搜索服务、盘古数字人大脑和Dify,为具体的客户应用场景提供一整套解决方案。 KooSearch企业搜索服务:基于在MaaS开源大模型部署的模型API,搭建企业专属方案、LLM驱动的语义搜索、多模态搜索增强。 盘古数字人大脑:基于在MaaS开源大模型部署的模型API,升级智能对话解决方案,含智能客服、数字人。
修改在线服务配置 对于已部署的服务,您可以修改服务的基本信息以匹配业务变化,更换模型的版本号,实现服务升级。 您可以通过如下两种方式修改服务的基本信息: 方式一:通过服务管理页面修改服务信息 方式二:通过服务详情页面修改服务信息 前提条件 服务已部署成功,“部署中”的服务不支持修改服务信息进行升级。
├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm
├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接
├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm
启,表示不做重新下发作业,也不会启用环境检测。打开开关后,允许设置重启次数为1~128次。 图5 自动重启设置 使用API接口设置容错检查: 用户可以通过API接口的方式开启自动重启。创建训练作业时,在“metadata”字段的“annotations”中传入“fault-tol
菜单栏中选择“模型部署>在线服务”,进入在线服务管理页面。 单击在线服务列表“操作”列的“更多>删除”删除服务。 勾选在线服务列表中的服务,然后单击列表左上角“删除”按钮,批量删除服务。 单击目标服务名称,进入服务详情页面,单击右上角“删除”删除服务。 删除操作无法恢复,请谨慎操作。
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
参数解释请参见部署在线服务。 图7 部署在线服务-专属资源池 单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 图8 服务部署完成 Step4 调用在线服务 进入在线服务详情页面,选择“预测”。 如果以vllm接口启动服务,设置请求路径:“/ge
命令行程序的用户,obsutil是执行批量处理、自动化任务的好的选择。 如果您的业务环境需要通过API或SDK执行数据上传操作,或者您习惯于使用API和SDK,推荐选择OBS的API或SDK方法创建桶和上传对象。 上述说明仅罗列OBS常用的使用方式和工具,更多OBS工具说明,请参见《OBS工具指南》。
息。 部署服务并查看详情 在模型详情页面,单击右上角“部署>在线服务”,进入服务部署页面,模型和版本默认选中,选择合适的“实例规格”(例如CPU:2核 8GB),其他参数可保持默认值,单击“下一步”,跳转至服务列表页,当服务状态变为“运行中”,服务部署成功。 单击服务名称,进入服