检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下
数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下
Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下
数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下
数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下
Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下
获得灵活的、更高性价比的算力资源。当购买了套餐包,在使用公共资源池运行任务时,将会优先抵扣套餐包的配额,超出当前套餐包的额度或使用时段,将自动转为按需收费。 关于套餐包的约束限制、资源包抵扣顺序和套餐包余量预警请参见套餐包。 购买操作如下: 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
强化学习引擎为learner,worker TensorFlow为ps,worker “MA_TASK_NAME=worker” MA_NUM_HOSTS 实例数。系统自动从资源参数的“实例数”中读取。 “MA_NUM_HOSTS=4” VC_TASK_INDEX 当前容器索引,容器从0开始编号。单机训练的时
Storage Service)作为存储的方案,OBS用于存储模型文件、训练数据、代码、日志等,提供了高可靠性的数据存储解决方案。 约束限制 如果要使用自动重启功能,资源规格必须选择八卡规格,只有llama3-8B/70B支持该功能。 适配的CANN版本是cann_8.0.rc3,驱动版本是23
Object Storage Service)与SFS Turbo文件系统联动,可以实现灵活数据管理、高性能读取等。 约束限制 如果要使用自动重启功能,资源规格必须选择八卡规格。 适配的CANN版本是cann_8.0.rc3,驱动版本是23.0.6。 本案例仅支持在专属资源池上运行,确保专属资源池可以访问公网。
true 用于指定是否覆盖缓存。如果设置为"overwrite_cache",则在训练过程中覆盖缓存。这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。
代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/pytorch/demo-code/”,训练代码会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,“demo-code”为OBS存放代码路径的最后一级目录,可以根据实际修改。
源上执行管理命令。ma-cli支持用户在ModelArts Notebook及线下虚拟机中与云端服务交互,使用ma-cli命令可以实现命令自动补全、鉴权、镜像构建、提交ModelArts训练作业、提交DLI Spark作业、OBS数据复制等,具体参见ModelArts CLI命令参考。
在训练作业详情页面,选择Cloud Shell页签,登录训练容器(训练作业需处于运行中)。 安装py-spy工具。 # 通过utils.sh脚本自动配置python环境 source /home/ma-user/modelarts/run/utils.sh # 安装py-spy pip
代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/pytorch/demo-code/”,训练代码会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,“demo-code”为OBS存放代码路径的最后一级目录,可以根据实际修改。
当资源规格为单机多卡时,需要指定超参world_size和rank。 当资源规格为多机时(即实例数大于 1),无需设置超参world_size和rank,超参会由平台自动注入。 方式二:使用自定义镜像功能,通过torch.distributed.launch命令启动训练作业。 创建训练作业的关键参数如表2所示。
修改封面图和二级标题 在发布的资产详情页面,单击右侧的“编辑”,选择上传新的封面图,为资产编辑独特的主副标题。 编辑完成之后单击“保存”。封面图和二级标题内容自动同步,您可以直接在资产详情页查看修改结果。 图1 修改封面图和二级标题 编辑标签 单击标签右侧的出现标签编辑框,在下拉框中勾选该资产对应的标签。
pt模型转onnx模型。以转换yolov8n.pt为例,执行如下命令,执行完会在当前目录生成yolov8n.onnx文件。 python pt2onnx.py --pt yolov8n.pt onnx模型转mindir格式,执行如下命令,转换完成后会生成yolov8n.mindir文件。 converter_lite
test.com or code.test.com:443 API同时支持使用AK/SK认证,AK/SK认证是使用SDK对请求进行签名,签名过程会自动往请求中添加Authorization(签名认证信息)和X-Sdk-Date(请求发送的时间)请求头。AK/SK认证的详细说明请参见API签名指南。
会首先下载模型文件到/home/ma-user/.cache目录下,然后启动推理步骤。 图1 启动脚本 运行结束后,可以看到当前目录下生成了对应尺寸的图像。 图2 推理生成的图像 步骤四 Diffusers使能多实例共享权重功能 进入AIGC插件解压路径,安装昇腾云torch插件。 pip install