检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器学习技术,同时ModelArts是一站式的AI开发平台,从数据标注、算法开发、模型训练及部署,管理全周期的AI流程。直白点解释,ModelArts包含并支持DLS中的功能特性。当前,DLS服务已从华为云下线,深度学习技术相关的功能
order="desc") print(model_object_list) 参数说明 查询模型列表,返回list,list大小等于当前用户所有已经部署的模型个数, list中每个元素都是Model对象,对象属性和查询模型详情相同。查询模型列表返回说明: model_list = [model_instance1
在ModelArts中导入AI应用时,支持用户自己选择HTTP和HTTPS两种传输协议,为保证数据传输的安全性,推荐用户使用更加安全的HTTPS协议。 数据完整性检查 推理部署功能模块涉及到的用户模型文件和发布到AIGallery的资产在上传过程中,有可能会因为网络劫持、数据缓存等原因,存在数据不一致的问题。Mo
ommit编号 ll 如果出现如图2,则表示远端已上传,则执行2。 反之,如果显示0KB,则表示远端未上传。请参考Notebook如何离线安装VS Code Server离线下载VS Code插件后,再执行2。 图2 远端已上传 关闭VS Code所有窗口,回到ModelArts
e") print(predictor_object_list) 参数说明 查询服务列表,返回list,list大小等于当前用户所有已经部署的服务个数,list中每个元素都是Predictor对象,对象属性同本章初始化服务。 查询服务列表返回说明:service_list_resp
JOBSTAT_SUBMIT_MODEL_FAILED,提交模型失败。 17 JOBSTAT_DEPLOY_SERVICE_FAILED,部署服务失败。 18 JOBSTAT_CHECK_INIT,审核作业初始化。 19 JOBSTAT_CHECK_RUNNING,审核作业正在运行中。
atch_size,优化代码,合理聚合、复制数据。 请注意,数据文件大小不等于内存占用大小,需仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码)
“/home/ma-user/work”目录以及动态挂载在“/data”下的目录下的数据会保存,其余目录下内容会被清理。例如:用户在开发环境中的其他目录下安装的外部依赖包等,在Notebook停止后会被清理。您可以通过保存镜像的方式保留开发环境设置,具体操作请参考保存Notebook实例。 No
设置某一作业类型后,即可在此专属资源池中下发此种类型的作业,没有设置的作业类型不能下发。 为了支持不同的作业类型,后台需要在专属资源池上进行不同的初始化操作,例如安装插件、设置网络环境等。其中部分操作需要占据资源池的资源,导致用户实际可用资源减少。因此建议用户按需设置,避免不必要的资源浪费。 约束限制 专属资源池状态处于“运行中”。
Mindspore版本与CANN版本,CANN版本与Ascend驱动/固件版本均有严格的匹配关系,版本不匹配会导致训练失败。 场景描述 目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用Ascend规格资源运行训练任务。 ubuntu-18.04 cann-6.3.RC2
由于发布后的数据集不会默认启动数据特征分析,针对数据集的各个版本,需手动启动特征分析任务。在数据特征页签下,单击“启动特征分析”。 在弹出的对话框中配置需要进行特征分析的数据集版本,然后单击“确定”启动分析。 “版本选择”,即选择当前数据集的已发布版本。 图1 启动数据特征分析任务 数据特
在“删除资源池”页面,需在文本框中输入“DELETE”,单击“确定”,删除资源池。 可切换“训练作业”、“推理服务”、“开发环境”页签查看资源池上创建的训练作业、部署的推理服务、创建的Notebook实例。 图1 删除资源池 释放游离节点 如果您的资源中存在游离节点(即没有被纳管到资源池中的节点),您可在“AI专属资源池
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:部署在线服务报错starting container process caused "exec: \"/home/mind/model/run_vllm
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现物体检测
原因:训练作业使用的镜像CUDA版本只支持sm_37、sm_50、sm_60和sm_70的加速卡,不支持sm_80。 处理建议:使用自定义镜像创建训练作业,并安装高版本的cuda以及对应的PyTorch版本。 查看训练作业的“日志”,出现报错“ERROR:root:label_map.pbtxt cannot
当不需要该工作空间时,可以调用删除工作空间接口删除工作空间。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现声音分类
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现文本分类
/projects,其中{iam-endpoint}为IAM的终端节点,可以从地区和终端节点处获取。 响应示例如下,例如ModelArts部署的区域为"cn-north-4",响应消息体中查找“name”为"cn-north-4",其中projects下的“id”即为项目ID。 {
UTC'的毫秒数。 description String 模型描述信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为“auto”。 父主题: 模型管理