检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建模型评估数据集 在收集评估数据集时,应确保数据集的独立性和随机性,并使其能够代表现实世界的样本数据,以避免对评估结果产生偏差。对评估数据集进行分析,可以帮助了解模型在不同情境下的表现,从而得到模型的优化方向。 在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。
数据量足够,但质量较差,可以微调吗 对于微调而言,数据质量非常重要。一份数据量少但质量高的数据,对于模型效果的提升要远大于一份数据量多但质量低的数据。若微调数据的质量较差,那么可能会导致模型学习到一些错误或者不完整的信息,从而影响模型的准确性和可靠性。因此,不建议您直接使用低质量数据进行微调。
限制。 每个模型请求的最大Token数有所差异,详细请参见模型的基础信息。 模型所支持的训练数据量、数据格式要求请参见《用户指南》“准备盘古大模型训练数据集 > 模型训练所需数据量与数据格式要求”。
盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算
数据量满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 典型训练问题和优化策略
构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性。建议将不同文本构建为不同的场景,甚至将同一段文本构建为多个不同的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。 父主题:
报错原因:模型训练过程中,训练日志出现“no such file or directory”报错,表示当前数据集格式、数据命名、数据存储路径不满足训练要求。 解决方案:请参考数据格式要求校验数据集格式。 请检查数据集路径是否设置正确。 图2 no such file or directory报错 The
数据量和质量均满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习
配置Cache(Java SDK) Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,这样当需要访问这些数据时,就不用再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 对LLM使用缓存: LLM llm = LLMs.of(LLMs
了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “
数据量和质量均满足要求,Loss也正常收敛,为什么微调后的效果不好 这种情况可能是由于以下几个原因导致的,建议您依次排查: Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格
候微调也无法解决所有问题。即使您的目标场景依赖垂域背景知识,微调也并非最佳方案,比如: 场景微调的数据量很少或者数据质量很差:微调对数据量和数据质量有很高的要求,需要使用高质量的数据进行模型训练。 垂域知识问答场景:通用模型本身已经具有在给定的一段或几段段落知识的场景下进行总结回
Caches.of("inMemory") # 更新数据 cache.update("1+1", LLMResp(answer=2)) 查询数据:从缓存中获取数据,需要指定数据的键值对。例如,查找1+1这个问题对应的答案,参考示例如下: # 查找数据 cache_value = cache.lookup("1+1")
启用盘古大模型搜索增强能力 大模型在训练时使用的是静态的文本数据集,这些数据集通常是包含了截止到某一时间点的所有数据。因此,对于该时间点之后的信息,大模型可能无法提供。 通过将大模型与盘古搜索结合,可以有效解决数据的时效性问题。当用户提出问题时,模型先通过搜索引擎获取最新的信息,
"target": "是的,我试了 还是不行"} 数据质量:若数据格式没有问题,仍然发现模型效果不好,您可以根据具体问题针对性的提升您的数据质量。比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。 父主题: 典型训练问题和优化策略
若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:如果微调数据很多,从客观上来说越多的数据越能接近真实分布,那么可以使用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
配置盘古访问授权 盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够正常的存储数据、训练模型,需要用户配置盘古访问OBS的权限。 使用主账号登录盘古大模型套件平台。 在左侧菜单选择“平台管理
json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。
图1 模型评估列表页面 填写评估任务所需的评估配置、评估数据和基本信息。 图2 创建评估任务 评估配置: 待评估模型:支持选择多个模型版本同时评估,最多选择5个。待评估模型必须符合前提条件。 评估资源:依据选择的模型数据自动给出所需的评估资源。 打分模式:当前版本打分模式仅支持