检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够正常的存储数据、训练模型,需要用户配置盘古访问OBS的权限。 使用主账号登录盘古大模型套件平台。 在左侧菜单选择“平台管理 > 授权管理”,单击右上角“一键授权”进行授权。
@Tool说明: name。工具的标识,建议为英文且与实际工具含义匹配,在同一个Agent中唯一。 description。工具的描述,建议为中文,尽可能的简短描述工具。 principle。何时使用该工具,为重要参数,该描述直接影响LLM对工具使用的判断,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。
PANGUDOC); 其中,filePath指的是需要解析的文档路径,mode为分割解析模式,具体定义如下: 0 - 返回文档的原始段落,不做其他处理。 1 - 根据标注的书签或目录分段,一般适合有层级标签的word文档。 2 - 根据内容里的章节条分段,适合制度类文档。 3 - 根据长度分
统计模型调用量 模型调用成功后,有两种方式可以查看模型的调用量。 通过“服务管理”功能查看调用量:查看具体某个模型的调用总量、调用成功量、调用失败量,且可按时间进行筛选。 通过“运营面板”功能查看调用量:查看全部模型访问总数、模型回复时的响应时长、兜底回复比例以及输入/输出token信息。
高质量的提示词,可以将提示词发布至“提示词管理”中。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程名称,跳转工程任务下候选提示词页面。 图1 提示词工程 勾选所需的提示词,并单击“保存到模板库”。
开启内容审核后,可以有效拦截大模型输入、输出的有害信息,保障模型调用安全。 NLP模型在流式输出时,同样支持内容审核。特别是模型生成超长内容时,通过实时审核模型生成的内容片段,可以有效降低首token的审核时延,同时确保用户看到的内容是经过严格审核的。 图3 大模型内容审核 购买内容审核
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 华为云盘古大模型,以下功能支持API调用。 表1 API清单 API 功能 NLP-文本补全 给定一个
LLMs.of("pangu") 基础问答:基础的模型文本问答(temperature等参数采用模型默认的设置)。 llm_api.ask("你是谁?").answer 自定义参数问答:自定义设置如temperature等参数,获得对应的效果。 from pangukitsappdev
pangu_kits_app_dev_py 本地导入 从support网站上下载pangu-kits-app-dev-py的whl包。 建议使用conda创建一个新的python环境,python版本选择3.9。 在whl包同级目录下,执行如下命令安装: pip install pa
通过基模型训练出行业大模型和提示词写作的最佳实践,您将深入掌握行业模型的定制化流程与高效提示词构建方法,确保在实际应用中充分发挥盘古大模型的行业优势,提升业务效果。 最佳实践 提示词写作实践 从基模型训练出行业大模型 06 API 通过API文档的概述、NLP大模型API和科学计算大模型API的详细介绍,您
大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模型。此类大模型因具备更强的泛化能力,能够沉淀行业经验,并更高效、准确地获取信息。
单击评估名称,进入评估任务详情页,可以查看详细的评估进度。例如,在图2中有10条评估用例,当前已经评估了8条,剩余2条待评估。 图2 查看评估进展 评估完成后,进入“评估报告”页面,可以查看每条数据的评估结果。 在评估结果中,“预期结果”即为变量值(问题)所预设的期望回答,“生成结果”即模型回复的结果。通过比较
初始化带参数的盘古LLM LLM pangu = LLMs.of(LLMs.PANGU, llmConfig); pangu.ask("写一篇五言律诗").getAnswer(); 支持调整的参数解释。 private int maxTokens; // 完成时要生成的令牌的最大数量
盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS数据保
预警,需要优化数据 <40% 红色 告警,需要优化数据 (可选)当“我的数据集”的OBS数据发生变更时,可以单击右上角“检测”按钮重新校验数据集,也可以在“我的数据集”页签中,单击操作栏中的“更多 > 检测”,重新校验数据集。历史存量未校验过的数据集也可以进行重新校验。 图2 重新校验数据集质量1
gemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装Maven,安装完成后您只需要在Java项目的pom.xml文件中加入相应的依赖项即可。 <dependency>
模型基础问答能力应用开发(Python SDK) 应用介绍 基础的大语言模型问答场景。涉及模型问答,流式效果等相关特性。 环境准备 python3.9 及以上版本。 安装依赖的组件包, pip install pangu_kits_app_dev_py gradio。 盘古大语言模型。
在清洗数据时,用户可以通过组合不同的数据清洗算子来实现数据清洗功能。平台提供了多种数据清洗模板,用户可以直接套用这些模板进行数据清洗。 数据清洗模板获取方式如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,进入“清洗模板”页面,在该页面查看预置的数据清洗模板。 图1
补预设 当任务存在多个情境时,编写提示词时需要考虑全面,需要做好各种情境的预设,告知模型对应策略,可以有效防止模型误回答以及编造输出。 父主题: 常用方法论
选择需要部署的模型。 推理资源 选择非限时免费的模型时显示。选择盘古大模型服务提供的在线推理资产。 部署方式 选择“在线部署”,即将算法部署至盘古大模型服务提供的资源池中。 推理资产 选择“已购资产”。 限时免费:使用免费的推理资源,仅支持部署一个实例。 已购资产:由用户购买的推理资源,实际可用推理单元由购买时的数量决定。