检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
gallery方法的visibility+group_users字段进行设置,后续需要对指定资产进行用户白名单添加或删除操作时,可执行如下命令: from modelarts import workflow as wf # 添加指定的白名单用户列表 wf.add_whiteli
deleteme ”。 原因分析 用户使用权限问题导致。 处理方法 用户电脑切换到管理员角色,键盘快捷键(Windows+R模式)并输入cmd,进入黑色窗口,执行如下命令: python -m pip install --upgrade pip 父主题: API/SDK
no-dependencies = yes 启动cmd,执行如下命令下载需要的pip源中的包。 C:\Users\xxx>pip install numpy #numpy可替换为您需要下载的包 步骤三:安装ModelArts SDK 启动cmd,执行如下命令安装ModelArts SDK。
创建Workflow模型注册节点 功能介绍 通过对ModelArts模型管理的能力进行封装,实现将训练后的结果注册到模型管理中,便于后续服务部署、更新等步骤的执行。主要应用场景如下: 注册ModelArts训练作业中训练完成的模型。 注册自定义镜像中的模型。 属性总览 您可以使用
创建Workflow数据集节点 功能介绍 通过对ModelArts数据集能力进行封装,实现新版数据集的创建功能。主要用于通过创建数据集对已有数据(已标注/未标注)进行统一管理的场景,后续常接数据集导入节点或者数据集标注节点。 属性总览 您可以使用CreateDatasetStep
创建Workflow服务部署节点 功能介绍 通过对ModelArts服务管理能力的封装,实现Workflow新增服务和更新服务的能力。主要应用场景如下: 将模型部署为一个Web Service。 更新已有服务,支持灰度更新等能力。 属性总览 您可以使用ServiceStep来构建
创建Workflow数据集标注节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的标注功能。数据集标注节点主要用于创建标注任务或对已有的标注任务进行卡点标注,主要用于需要对数据进行人工标注的场景。 属性总览 您可以使用LabelingStep来构建数据集标注节点,LabelingStep结构如下:
创建Workflow数据集导入节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的数据导入功能。数据集导入节点主要用于将指定路径下的数据导入到数据集或者标注任务中,主要应用场景如下: 适用于数据不断迭代的场景,可以将一些新增的原始数据或者已标注数据导入到标注任
在Workflow中使用大数据能力(DLI/MRS) 功能介绍 该节点通过调用MRS服务,提供大数据集群计算能力。主要用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。 使用案例 在华为云MR
ModelArts服务部署了态势感知服务,以感知攻击现状,还原攻击历史,同时及时发现合规风险,对威胁告警及时响应。 ModelArts承载关键业务的对外开放EIP部署了高防服务,以防大流量攻击。 ModelArts对存放关键数据的数据库部署了数据库安全服务。 云服务防抖动和遭受攻击后的应急响应/恢复策略
创建Workflow数据集版本发布节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的版本自动发布的功能。数据集版本发布节点主要用于将已存在的数据集或者标注任务进行版本发布,每个版本相当于数据的一个快照,可用于后续的数据溯源。主要应用场景如下: 对于数据标注这
配置多分支节点数据 功能介绍 仅用于存在多分支执行的场景,在编写构建工作流节点时,节点的数据输入来源暂不确定,可能是多个依赖节点中任意一个节点的输出。只有当依赖节点全部执行完成后,才会根据实际执行情况自动获取有效输出作为输入。 使用案例 from modelarts import
在主机上新建config.yaml文件。 config.yaml文件用于配置pod,本示例中使用sleep命令启动pod,便于进入pod调试。您也可以修改command为对应的任务启动命令(如“python train.py”),任务会在启动容器后执行。 config.yaml内容如下:
-m -u 1000 -g 100 -s /bin/bash ma-user 明确设置镜像的启动命令。在dockerfile文件中指定cmd,dockerfile指令示例如下: CMD sh /home/mind/run.sh 启动入口文件run.sh需要自定义。示例如下: #!/bin/bash
配置节点参数控制分支执行 功能介绍 支持单节点通过参数配置或者获取训练输出的metric指标信息来决定执行是否跳过,同时可以基于此能力完成对执行流程的控制。 应用场景 主要用于存在多分支选择执行的复杂场景,在每次启动执行后需要根据相关配置信息决定哪些分支需要执行,哪些分支需要跳过
在Workflow中指定仅运行部分节点 Workflow通过支持预置场景的方式来实现部分运行的能力,在开发工作流时按照场景的不同对DAG进行划分,之后在运行态可选择任意场景单独运行。具体代码示例如下所示: workflow =wf.Workflow( name="image_cls"
动命令: cmd || sleep 5h 如果训练失败,则会执行sleep命令,此时可通过Cloud Shell登录容器镜像中调试。 在Cloud Shell中调试多节点训练作业时,需要在Cloud Shell中切换work0、work1来实现对不同节点下发启动命令,否则任务会处于等待其他节点的状态。
-m -u 1000 -g 100 -s /bin/bash ma-user 明确设置镜像的启动命令。在dockerfile文件中指定cmd,dockerfile指令示例如下: CMD sh /home/mind/run.sh 启动入口文件run.sh需要自定义。示例如下: #!/bin/bash
/bin/activate TensorFlow-1.8 如果需要在其他python环境里安装,请将命令中“TensorFlow-1.8”替换为其他引擎。 在代码输入栏输入以下命令安装Shapely。 pip install Shapely 父主题: CodeLab
Interpreter,选择对应的Python环境。 单击页面上方的“Terminal > New Terminal”,此时打开的命令行界面即为远端容器环境命令行。 进入引擎后,通过执行如下命令安装依赖包。 pip install spacy 父主题: 通过VS Code远程使用Notebook实例