检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级
获取用户token 可信计算节点管理 连接器管理 数据集注册管理 任务管理 通知管理 数据集管理 多方安全计算作业管理 可信联邦学习作业管理 联邦预测作业管理 作业实例管理 联邦学习作业管理
编辑批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“联邦预测”页面,选择批量预测的Tab页,找到待开发的作业,单击“开发”。 图1 开发作业 在弹出的对话框中编辑“选择模型”。只允许选择模型,其它作业参数暂时不支持修改。
可信节点管理 用于获取计算节点列表。 数据集管理 用于查询空间已注册数据集列表。 联邦分析作业管理 用于查询多方安全计算作业列表。 联邦学习作业管理 用于查询联邦学习作业列表。 作业实例管理 用于查询作业的历史实例列表。 审计日志管理 用于查询审计日志。 表2 TICS计算节点API接口说明
运行作业时,提示存在数据泄露风险,怎么处理? 如果错误提示是可能泄露了唯一标识(may disclose the specific value of the uniqueID…),则检查自己的最终输出结果中,是否有和自己做Join连接的ID完全对应的字段。例如输出了名字,而名字可
String 作业名称,最大长度128 job_type String 作业类型。作业类型:SQL.联合SQL分析,HFL.横向联邦学习,VFL.纵向联邦学习,PREDICT.预测 creatorName String 创建人名称,最大值128 create_time String 创建时间。
运行作业前,提示“Privacy rule verification failed”,怎么处理? 当在作业编辑页面编写SQL语句,并试图运行时,右上角提示“Privacy rule verification failed”。 原因是SQL语句中存在使用隐患字段的情况。 请根据具体
connector_query_type 否 String 连接器类型,主要分为多方安全计算连接器和可信联邦学习连接器。 多方安全计算连接器 MRS, RDS_MYSQL, DWS, JDBC, MYSQL, ORACLE, 可信联邦学习连接器 LOCAL 请求参数 表2 请求Header参数 参数 是否必选 参数类型
config_file_path String 配置文件地址 auto_generate_data Boolean 是否自动生成数据,即纵向联邦学习样本对齐之后的流程是否使用样本对其结果自动过滤。 ext LocalDatasetExtEntity object 扩展信息,包含mult
响部分功能使用。 资源分配策略 CPU(Cores) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0.6倍,且向下取整。
响部分功能使用。 资源分配策略 CPU(Cores) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0.6倍,且向下取整。
使用场景 多方安全计算场景 纵向联邦建模场景 隐私求交黑名单共享场景 实时隐匿查询场景 可信数据交换场景 横向联邦学习场景
空间API 统计信息管理 空间管理 数据集管理 联邦分析作业管理 联邦学习作业管理 作业实例管理 审计日志管理 可信节点管理
纵向联邦建模场景 使用TICS多方安全计算进行联合样本分布统计 使用TICS可信联邦学习进行联邦建模 使用TICS联邦预测进行新数据离线预测 父主题: 使用场景
Task) 作业实例拆解出的更细粒度任务。 多方安全计算 允许多合作方参与的结构化数据SQL分析作业。 可信联邦学习 允许多合作方参与的模型训练、评估作业。 联邦预测学习 允许多合作方参与的样本联合预测作业。 存储方式 指计算节点所属的CCE或IEF容器的工作负载,目前支持“OBS
响部分功能使用。 资源分配策略 CPU(Cores) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0.6倍,且向下取整。
通过创建并执行可信智能计算服务提供的隐私求交作业,可以得到最终交集数据并保存下来,用于后续的数据分析以及使用。 联合使用场景 用于纵向联邦学习中数据对齐。 父主题: 隐私求交
测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 根据前一篇文章,企业A已经通过可信联邦学习功能训练出了一个预测客户时候是高价值用户的模型。 本文主要介绍企业A和大数据厂商B如何通过已有的模型对新的业务数据进行预测。 父主题: 使用TICS联邦预测进行新数据离线预测
数据集(Data set) 数据集为计算节点获取并配置的合作方数据的元数据信息,以及附加其上的隐私策略。 作业(Job) 作业是指用户创建的分析、学习任务。 父主题: 服务介绍
config_file_path 否 String 配置文件地址 auto_generate_data 否 Boolean 是否自动生成数据,即纵向联邦学习样本对齐之后的流程是否使用样本对其结果自动过滤。 ext 否 LocalDatasetExtEntity object 扩展信息,包含mu