检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在深度学习的背景下,大多数正则化策略都会对估计进行正则化。估计的正则化以偏差的增加换取方差的减少。一个有效的正则化是有利的 ‘‘交易’’,也就是能显著减少方差而不过度增加偏差。主要侧重模型族训练的 3 个情形:(1)不包括真实的数据生成过程——对应欠拟合和含有偏差的情况,(2)匹
几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降 (stochastic gradient descent, SGD)。随机梯度下降是第4.3节介绍的梯度下降算法的一个扩展。机器学习中的一个循环问题是大的数据集是好的泛化所必要的,但大的训练集的计算代价也更大。机器学
本质上即为每个类别创建一个输出通道。因为上图有5个类别,所以网络输出的通道数也为5,如下图所示:如上图所示,预测的结果可以通过对每个像素在深度上求argmax的方式被整合到一张分割图中。进而,我们可以轻松地通过重叠的方式观察到每个目标。argmax的方式也很好理解。如上图所示,每
本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。
样本,网络可以学习到输入与输出之间的非线性关系,并用于预测未知数据。 让我们以一个实例来说明神经网络在测井曲线预测中的应用。假设我们有一组包含测井曲线数据的数据集,其中包括电阻率、自然伽马射线和孔隙度等测井曲线。我们的目标是根据已有的测井曲线数据来预测未来的测井曲线值。 首先,我
于颜料来说,各种深度学习框架已经提供了我们所需的各种颜料。我们要做的,就是利用不同的颜料,在空白的纸上,一笔一划画出我们所需的网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中的
什么是深度?深度就是简单的量变。神经网络到深度神经网络,就是每一层的节点搞多一点,层数也搞多一点。但是如果说网络越深,节点越多,表现能力就越好,这个我看未必,过犹未及嘛深度神经网络本身没再多讲,讲的是卷积神经网络就是CNN。这个是在60年代的时候,在研究猫的神经元时发现的,199
No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解
深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播
深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到
主要通过深度学习框架MXNet来介绍如何实战深度学习算法,该框架融合了命令式编程和符号式编程,在灵活和高效之间取得了非常好的平衡。正如前文所述,各深度学习框架之间有很多相似性,当你深入了解其中一种深度学习框架之后基本上就能举一反三,因此如果你现在还在犹豫学习哪个深度学习框架,那么
欠拟合、正常拟合、过拟合的表现形式:归纳出来的不是普遍规律,那就是过拟合。所以,从这个图来看,每次打100分,也不一定就是好事。
机器学习和深度学习的未来蕴含着无穷的可能!越来越多的机器人不仅用在制造业,而且在一些其他方面可以改善我们的日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习和深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更
说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```
卷积操作就是filter矩阵跟filter覆盖的图片局部区域矩阵对应的每个元素相乘后累加求和。
Dropout(Dropout)(Srivastava et al., 2014) 提供了正则化一大类模型的方法,计算方便但功能强大。在第一种近似下,Dropout可以被认为是集成大量深层神经网络的实用Bagging方法。Bagging涉及训练多个模型,并在每个测试样本上评估多个
在Bagging的情况下,每一个模型在其相应训练集上训练到收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之的是,在单个步骤中我们训练一小部分的子网络,参数共享会使得剩余的子网络也能有好
temp2); temp1 = temp2; x=x-20; } 心跳曲线部分代码,其实主要就是画线,每一段线连起来,就是曲线了,剩下的代码在后面慢慢贴出来
TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief 。Tensorflow拥有多层级结构,可部
个问题:能不能用回归问题的解法求解分类问题呢?答案是可以的。分类问题与普通回归问题最主要的区别在于要拟合的不是直线或曲线,而是一系列离散值。2.1节中提到的逻辑回归就可以很好地拟合线性二分类问题。逻辑回归基于如图2.4所示的逻辑函数(Logistic Function,又称为对数概率函数),即:式中,e(