检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而
务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。 实例化Tool(Python SDK) 实例化Agent(Python SDK) 运行Agent(Python SDK) 监听Agent(Python
务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。 实例化Tool(Java SDK) 实例化Agent(Java SDK) 运行Agent(Java SDK) 监听Agent(Java
add_tool(SearchTool()) 静态工具和动态工具的注册方式相同,通过addTool接口进行注册。 通过set_max_iterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。 Agent使用的模型必须为Pangu-NLP-N2-Agent-L0
# 不同的向量存储, 不同的相似算法;计算的评分规则不同; 可以同过scoreThreshold 设置相似性判断阈值 # 例如使用Redis向量、余弦相似度、CSS词向量模型,并且设置相似性判断阈值为0.1f,代码示例如下 embedding_api = Embeddings.of("css")
用户可以在页面右侧进行参数设置,然后在输入框中输入问题,模型就会返回对应的答案内容,具体参数信息见表1。 图1 体验预置模型功能 表1 能力调测参数信息表 参数名称 描述 温度 控制语言模型输出的随机性与创造性。温度设置越低,输出更可预测;温度设置越高,输出种类更多,更不可预测。
用户可以在页面右侧进行参数设置,然后在输入框中输入问题,模型就会返回对应的答案内容,具体参数信息见表1。 图1 体验预置模型功能 表1 能力调测参数信息表 参数名称 描述 温度 控制语言模型输出的随机性与创造性。温度设置越低,输出更可预测;温度设置越高,输出种类更多,更不可预测。
登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理 在“创建工具”页面参考表1完成工具代码的设置。 表1 创建工具参数说明 参数 是否必选 参数类型 描述 tool_id 是 String 工具ID,必须由英文小写字母和_组成,需要符合实际工具含义。
Administrator 统一身份认证服务(除切换角色外)所有权限。 图3 添加用户组权限 设置最小授权范围。 根据授权项策略,系统会自动推荐授权范围方案。例如,可以选择“所有资源”,即用户组内的IAM用户可以基于设置的授权项限使用账号中所有的企业项目、区域项目、全局服务资源。也可以选择“指定区
数据量和质量均满足要求,Loss也正常收敛,为什么微调后的效果不好 这种情况可能是由于以下几个原因导致的,建议您依次排查: Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格
横向比较提示词效果 将设置为候选的两个提示词横向比较,获取提示词的差异性和效果。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务名称,跳转工程任务下候选提示词页面。 图1
在左侧导航栏中选择“数据工程 > 数据清洗”,单击界面右上角“创建任务”。 图1 数据清洗 依据需要清洗的数据类型,选择对应的数据集和数据集版本,输出路径,设置名称、描述等信息为可选项。 输出路径默认为系统生成,您也可以自定义输出路径,当前支持覆盖和追加两种方式。 覆盖:清洗后数据覆盖和替换原有数据集内容。
权限管理 如果您需要为企业员工设置不同的访问权限,以实现对华为云上购买的盘古大模型资源的权限隔离,可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,可以跳过本章节,不影响您使用服务的其他功能。
String customSystemPrompt = "你是财务报销助手。当需要用户反馈信息时,尽可能提示用户名称,手机号码等原始信息。今天的日期是" + new SimpleDateFormat("yyyy年MM月dd日").format(new Date());
边缘服务部署流程 边缘部署是指将模型部署到用户的边缘设备上。这些设备通常是用户自行采购的服务器,通过ModelArts服务纳管为边缘资源池。然后利用盘古大模型服务将算法部署到这些边缘资源池中。 图1 边缘资源池创建步骤 当前仅支持预置模型(盘古-NLP-N2-基础功能模型)和基于
结构化信息,可以将有监督的问题设置为“请根据标题xxx/关键性xxx/简介xxx,生成一段不少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子
创建知识库 选择知识库类型后,单击“创建”进入知识库设置页面,创建知识库。 当选择“自定义知识库”时,需要设置名称、英文名称、描述信息。注意英文名称和描述将影响模型检索效果,不可随意填写,需按照知识库中文档的实际内容或知识库目进行填写。设置完成后单击“立即创建”进入知识库详情页,上传文
清理数据:删除缓存中的数据。例如,删除对应的缓存数据,可参考以下示例。 // 清理 cache.clear() 配置过期策略:设置缓存有效期,支持基于时间和大小的限制。 // 设置缓存数据10s 后过期 Cache cache = Caches.of(Caches.IN_MEMORY, CacheStoreConfig
{project_id}/deployments/{deployment_id} (/chat/completions在SDK代码中已进行设置)。 盘古大模型API调用URL获取方式详见《API参考》“如何调用REST API” sdk.llm.pangu.iam.url sdk
of("pangu") 基础问答:基础的模型文本问答(temperature等参数采用模型默认的设置)。 llm_api.ask("你是谁?").answer 自定义参数问答:自定义设置如temperature等参数,获得对应的效果。 from pangukitsappdev.api