检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts域名信息。 准备连接Kafka集群配置文件 配置并导入样例工程 Kafka提供了不同场景下的样例程序,您可以导入样例工程进行程序学习。 导入并配置Kafka样例工程
Streaming三个组件,其应用开发流程相同。 开发流程中各阶段的说明如图1和表1所示。 图1 Spark应用程序开发流程 表1 Spark应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解Spark的基本概念,根据实际场景选择需要了解的概念,分为Spark Core基本概念、Spark
提交Spark任务时提示参数格式错误 磁盘容量不足导致Spark、Hive和Yarn服务不可用 引入jar包不正确导致Spark任务无法运行 Spark任务由于内存不够或提交作业时未添加Jar包,作业卡住 提交Spark任务时报错“ClassNotFoundException” 提交Spark任务时Driver端提示运行内存超限
Kafka客户端角色包括Producer和Consumer两个角色,其应用开发流程是相同的。 开发流程中各个阶段的说明如图1和表1所示。 图1 Kafka客户端程序开发流程 表1 Kafka客户端开发的流程说明 阶段 说明 参考文档 准备开发环境 Kafka的客户端程序当前推荐使用java语言进行开发,可使用IntelliJ
SQL和Spark Streaming三个组件,其应用开发流程都是相同的。 开发流程中各阶段的说明如图1和表1所示。 图1 Spark应用程序开发流程 表1 Spark应用开发的流程说明 阶段 说明 参考文档 准备开发环境 Spark的应用程序支持使用Scala、Java、Python三种语言
您已经对大数据领域各组件具备一定的认识。 您已经对弹性云服务器的使用方式和MRS服务开发组件有一定的了解。 您已经对Maven构建方式具备一定的认识和使用方法有一定了解。 您已经对Java语法具备一定的认识。 MRS组件应用开发流程说明 通常MRS组件应用开发流程如下所示,各组件应用的开发编译操作可参考组件开发指南对应章节。
Streaming三个组件,其应用开发流程都是相同的。 开发流程中各阶段的说明如图1和表1所示。 图1 Spark应用程序开发流程 表1 Spark应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解Spark的基本概念,根据实际场景选择需要了解的概念,分为Spark Core基本概念、Spark
ll_queries 单台服务器上所有查询的内存使用量,默认没有限制。建议根据机器的总内存,预留一部分空间,防止内存不够导致服务或者机器异常。 0 机器总内存的80% 否 max_memory_usage 单个查询在单台服务器的能使用的最大内存。 10G 50GB 否(新版本可通过多租户方式配置)
您已经对大数据领域各组件具备一定的认识。 您已经对弹性云服务器的使用方式和MRS服务开发组件有一定的了解。 您已经对Maven构建方式具备一定的认识和使用方法有一定了解。 您已经对Java语法具备一定的认识。 MRS组件应用开发流程说明 通常MRS组件应用开发流程如下所示,各组件应用的开发编译操作可参考组件开发指南对应章节。
您已经对大数据各组件具备一定的认识。 您已经对Java语法具备一定的认识。 您已经对弹性云服务器的使用方式和MapReduce服务开发组件有一定的了解。 您已经对Maven构建方式具备一定的认识和使用方法有一定了解。 MRS应用开发流程说明 通常MRS应用开发流程如下图所示,各组件应用的开发编译操作可参考组件开发指南对应章节。
解MRS相关的基础知识,包含MRS各组件的基本原理和增强特性介绍,以及MRS服务的特有概念和功能的详细介绍。 入门使用 您可以参考《快速入门》学习并上手使用MRS。《快速入门》提供了样例的详细操作指导,您可以基于此操作指导,创建和使用MRS集群。 使用更多的功能,并查看其相关操作指导
apJoin,执行MapJoin时会生成localtask任务,localtask启动的jvm内存继承了父进程的内存。 当有多个join执行的时候,启动多个localtask,如果机器内存不够,就会导致启动localtask失败。 解决办法 进入Hive服务配置页面: MRS 3
高频访问的SQL查询和有高耗时的算子(连接, 聚合等算子)的SQL通过建立物化视图进行预计算,然后在查询的SQL中将能匹配到物化视图的查询或者子查询转换为物化视图,避免了数据的重复计算,这种情况下往往能较大地提高查询的响应效率。 物化视图通常基于对数据表进行聚合和连接的查询结果创建。
大内存的90%)时,产生该告警。 直接内存使用率小于阈值时,告警恢复。 告警属性 告警ID 告警级别 是否自动清除 14016 重要 是 告警参数 参数名称 参数含义 来源 产生告警的集群名称。 服务名 产生告警的服务名称。 角色名 产生告警的角色名称。 主机名 产生告警的主机名。
30%以上的数据),建议使用coalesce算子,手动减少RDD的partition数量,将RDD中的数据压缩到更少的partition中去。因为filter之后,RDD的每个partition中都会有很多数据被过滤掉,此时如果照常进行后续的计算,其实每个task处理的parti
Bucket,需按照已有的数据量来进行分区分桶,能更好的提升导入及查询性能。Auto Bucket会造成Tablet数量过多,最终导致有大量的小文件。 创建表时的副本数必须至少为2,默认是3,禁止使用单副本。 没有聚合函数列的表不应该被创建为AGGREGATE表。 创建主键表时需保持主键的列唯一,不建议将所有列
Kerberos服务在收到ST请求后,校验其中的TGT合法后,生成对应的应用服务的ST,再使用应用服务密钥将响应消息进行加密处理。 应用客户端收到ST响应消息后,将ST打包到发给应用服务的消息里面传输给对应的应用服务端(Application Server)。 应用服务端收到请求后,使用本端应用服务对应的密钥解析其
面指定的操作,系统就得到了恢复。下面介绍了如何利用这样的概念保证接收到的数据的持久性。 Kafka数据源使用Receiver来接收数据,是Executor中的长运行任务,负责从数据源接收数据,并且在数据源支持时还负责确认收到数据的结果(收到的数据被保存在Executor的内存中,
对于minor压缩,在阶段1中要合并的segment数量和在阶段2中要合并的已压缩的segment数量。 如何调优 每次CarbonData加载创建一个segment,如果每次加载的数据量较小,将在一段时间内生成许多小文件,影响查询性能。配置该参数将小的segment合并为一个大的segment,然后对数据进行排序,可提高查询性能。
对于minor压缩,在阶段1中要合并的segment数量和在阶段2中要合并的已压缩的segment数量。 如何调优 每次CarbonData加载创建一个segment,如果每次加载的数据量较小,将在一段时间内生成许多小文件,影响查询性能。配置该参数将小的segment合并为一个大的segment,然后对数据进行排序,可提高查询性能。