检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AI助手 什么是AI助手 配置AI助手工具 配置知识库 创建AI助手 调测AI助手 调用AI助手API
创建提示词评估任务 选择候选提示词进行批量自动化评估。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程名称,跳转工程任务下候选提示词页面。 图1 提示词工程 选中需要评估的候
故障场景及用户主动终止训练任务后,能够基于中间checkpoints继续训练。 在数据配置中,选择训练模型所需的数据集。 图2 数据配置 完成训练任务基本信息。设置模型的名称、描述以及订阅提醒。 设置订阅提醒后,模型训练和部署过程产生的事件可以通过手机或邮箱发送给用户。 图3 基本信息
平台资源管理 管理模型资产、推理资产 获取Token消耗规则
横向比较提示词效果 将设置为候选的两个提示词横向比较,获取提示词的差异性和效果。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务名称,跳转工程任务下候选提示词页面。 图1
获取数据清洗模板 在清洗数据时,用户可以通过组合不同的数据清洗算子来实现数据清洗功能。平台提供了多种数据清洗模板,用户可以直接套用这些模板进行数据清洗。 数据清洗模板获取方式如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,进入“清洗模板”页面,在该页面查看预置的数据清洗模板。
创建有监督训练任务 创建有监督微调训练任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,选择模型类型、训练类型、训练方式、训练模型与训练参数。 其中,训练配置选择LLM(大语言模型),
注册边缘资源池节点 进入ModelArts服务,选择所需空间。 在左侧列表中单击“边缘资源池”,在“节点”页签中,单击“创建”。 在“创建边缘节点”页面中,填写节点名称,配置AI加速卡与日志信息,单击“确定”。 如果节点有npu设备需选择“AI加速卡 > Ascend”,并选择加速卡类型。
盘古应用开发SDK 盘古应用开发SDK概述 盘古应用开发SDK使用前准备 Python Java 盘古应用开发SDK实践
撰写提示词 创建提示词工程 撰写提示词 预览提示词效果 父主题: 提示词工程
部署盘古大模型 部署为在线服务 部署为边缘服务
Java 安装SDK(Java SDK) 配置SDK(Java SDK) 配置LLMs(Java SDK) 配置Prompt(Java SDK) 配置Memory(Java SDK) 配置Skill(Java SDK) 配置Agent(Java SDK) 父主题: 盘古应用开发SDK
发布数据集 刚创建的数据集在未发布状态下,无法应用于模型训练,数据集创建、清洗完成后需要执行“发布”操作才可以将该数据集用于后续的任务中。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,在“我的数据集”页签找到未发布的数据集,单击操作列“版本发布”执行发布数据集操作。
Python 安装SDK(Python SDK) 配置SDK(Python SDK) 配置LLMs(Python SDK) 配置Prompt(Python SDK) 配置Memory(Python SDK) 配置Skill(Python SDK) 配置Agent(Python SDK)
Provider的原理为将完整的工具存入内存,再根据工具检索的结果(toolId)将其从内存中取出。一般来说,ToolProvider将由用户自定义,将在后续示例中说明。 此外,上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此
体验盘古驱动的应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中选择“应用百宝箱”,进入“应用百宝箱”页面。
体验盘古大模型功能 申请体验盘古大模型服务 体验盘古预置模型能力 体验盘古驱动的应用百宝箱
横向比较提示词效果 设置候选提示词 横向比较提示词效果 父主题: 提示词工程
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 提示词工程
准备盘古大模型训练数据集 训练数据集创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据集 检测数据集质量 清洗数据集(可选) 发布数据集 创建一个训练数据集