检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
专属资源池VPC打通 通过打通VPC,可以方便用户跨VPC使用资源,提升资源利用率。 在“网络”页签,单击网络列表中某个网络操作列的“打通VPC”。 图1 打通VPC 在打通VPC弹框中,打开“打通VPC”开关,在下拉框中选择可用的VPC和子网。 需要打通的对端网络不能和当前网段重叠
提交训练作业时,出现xxx isn't existed in train_version错误 问题现象 提交训练作业时,出现xxx isn't existed in train_version错误,如下所示。 图1 xxx isn't existed in train_version
使用PyCharm上传数据至Notebook 不大于500MB数据量,直接复制至本地IDE中即可。 大于500MB数据量,请先上传到OBS中,再从OBS下载到云上Notebook。 图1 数据通过OBS中转上传到Notebook 上传数据至OBS,具体操作请参见上传文件至OBS桶。
在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度
使用PyCharm ToolKit创建并调试训练作业 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Notebook
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora
为什么资源充足还是在排队? 如果是公共资源池,一般是由于其他用户占用资源导致,请耐心等待或根据训练作业一直在等待中(排队)?方法降低排队时间。 如果是专属资源池,建议您进行以下排查: 排查专属资源池中是否存在其他作业(包括推理作业、训练作业、开发环境作业等)。 可通过总览页面,快速判断是否有其他模块的作业或实例在运行中
日志提示Compile graph failed 问题现象 日志提示:Compile graph failed。 图1 报错提示 原因分析 模型转换时未指定Ascend后端。 处理方法 需要在模型转换阶段指定“--device=Ascend”。 父主题: 常见问题
查找和收藏资产 AI Gallery共享了算法、Notebook代码样例、数据集、镜像、模型、Workflow等多种AI资产,为了方便快速搜索相关资产,提供了多种快速搜索方式以及收藏功能,提升资产的查找效率。 搜索资产 在各类资产模块页面,通过如下几种搜索方式可以提高资产的查找效率
物体检测标注时除了位置、物体名字,是否可以设置其他标签,比如是否遮挡、亮度等? 可以通过修改数据集给标签添加自定义属性来设置一些自定义的属性。 图1 修改数据集 父主题: Standard数据管理
人工标注视频数据 由于模型训练过程需要大量有标签的视频数据,因此在模型训练之前需对没有标签的视频添加标签。通过ModelArts您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelArts
迁移Standard专属资源池和网络至其他工作空间 背景信息 专属资源池的工作空间关联了企业项目,企业项目涉及到账单归集。为隔离不同子用户操作资源的权限,ModelArts提供了工作空间功能,管理员可以根据工作空间,隔离不同子用户操作工作空间内资源的权限。工作空间迁移包括资源池迁移和网络迁移
标注结果存储在哪里? ModelArts管理控制台,提供了数据可视化能力,您可以在控制台中查看详细数据以及标注信息。如需了解标注结果的存储路径,请参见如下说明。 背景说明 针对ModelArts中的数据集,在创建数据集时,需指定“数据集输入位置”和“数据集输出位置”。两个参数填写的均是
PyCharm ToolKit工具中Edit Credential时,出现错误 问题现象 PyCharm ToolKit工具中Edit Credential时,提示Validate Credential error。 或 原因分析 可能原因一:Region等信息配置不正确 可能原因二
安装ToolKit工具时出现错误,如何处理? 问题现象 在安装ToolKit工具过程中,出现如下错误。 图1 错误提示 解决措施 此问题是因为插件版本和PyCharm版本不一致导致的,需要获取和PyCharm同一版本的插件安装,即2019.2或以上版本。 父主题: PyCharm
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora
使用CodeLab时报错kernel restart 报错是由于CPU满了,建议切换更高规格或使用付费规格的CPU。 图1 切换规格或使用付费规格的CPU 父主题: Notebook实例常见错误
创建数据集版本 为数据集创建新的版本。 dataset.create_version(name=None, version_format=None, label_task_type=None, label_task_id=None, **kwargs) 示例代码 示例一:为数据集创建新的版本
VS Code连接Notebook方式介绍 Visual Studio Code (VS Code) 是一个流行的代码编辑器,它支持多种编程语言和开发环境。支持通过VS Code连接和使用Jupyter Notebook。 当用户创建完成支持SSH的Notebook实例后,使用VS