检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
击“确定”,完成选中图片的标注操作。例如,您可以选择多张图片,按照花朵种类将图片标注为“tulips”。同样选择其他未标注分类图片,将其标注为“sunflowers”、“roses”等。标注完成后,图片将存储至“已标注”页签下。 图片标注支持多标签,即一张图片可添加多个标签。 标
训练图像分类模型 完成图片标注后,可进行模型的训练。模型训练的目的是得到满足需求的图像分类模型。请参考前提条件确保已标注的图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您的数据集中的已标注的图片不低于100张。 请确保您的数据集中至少存在2种以上的图片分类,且每种分类的图片不少于5张。
创建处理任务,支持创建“特征分析”任务和“数据处理”两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或
performance_first:性能优先,训练时间较短,模型较小。对于TXT、图片类训练速度为10毫秒。 balance:平衡 。对于TXT、图片类训练速度为14毫秒 。 accuracy_first:精度优先,训练时间较长,模型较大。对于TXT、图片类训练速度为16毫秒。 父主题: 模型训练
查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或
物体检测标注时,支持叠加框吗? 支持。 “物体检测”类型的数据集,在标注时,可在一张图片中添加多个标注框以及标签。需注意的是,标注框不能超过图片边缘。 父主题: Standard数据管理
针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。 预测分析:由于预测分析任务的数据集不在数据管
在线服务预测报错MR.0105 问题现象 部署为在线服务,服务处于运行中状态,预测时报错:{ "erno": "MR.0105", "msg": "Recognition failed","words_result": {}}。 图1 预测报错 原因分析 请在“在线服务”详情页面
部署模型为在线服务 模型准备完成后,您可以将模型部署为在线服务,对在线服务进行预测和调用。 约束与限制 单个用户最多可创建20个在线服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 由于在线运行需消耗资源,确保账户未欠费。 操作步骤 登录Mo
自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。 例如,用户通过搜索引擎搜索XX,将相关图片下载并上传到数据集,然后再使用自动分组,可以将XX图片分类,比如论文、宣传海报、确认为XX的图片、其他。用户可以根据分组结果,快速剔除
针对“图像分类”标注作业 在“待确认”页签中,查看标注难例的图片,其添加的标签是否准确。勾选标注不准确的图片,删除错误标签,然后在右侧“标签名”处添加准确标签。单击“确认”,勾选的图片及其标注情况,将呈现在“已标注”页签下。 选中的图片为标注错误图片,在右侧删除错误标签,然后在标签名处添加“狗”
通过Token认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。在集成至生产环境之前,需要对此API进行调测,您可以使用以下方式向在线服务发起预测请求: 方式一
横坐标:边缘化程度,即目标框中心点距离图片中心点的距离占图片总距离的比值,值越大表示物体越靠近边缘。(图片总距离表示以图片中心点为起点画一条经过标注框中心点的射线,该射线与图片边界交点到图片中心点的距离)。 纵坐标:框数量(统计所有图片中的框)。 一般呈正态分布。用于判断物体是否处于图片边缘,有一些只露
加密桶的数据集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例
部署在线服务 部署在线服务包括: 已部署为在线服务的初始化。 部署在线服务predictor。 部署批量服务transformer。 部署服务返回服务对象Predictor,其属性包括服务管理章节下的所有功能。 示例代码 在ModelArts notebook平台,Session
SampleLabels objects 视频在线服务推理结果。 service_id String 在线服务ID。 service_name String 在线服务名称。 service_resource String 用户绑定的在线服务资源ID。 total_sample_count
在线服务 部署在线服务时,自定义预测脚本python依赖包出现冲突,导致运行出错 在线服务预测时,如何提高预测速度? 调整模型后,部署新版本AI应用能否保持原API接口不变? 在线服务的API接口组成规则是什么? 在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 在
pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite pipeline输出的结果图片进行对比,在这里保证输入图片及文本提示词一致。如果差异较为明显可以进行模型精度调优。 确认性能是否满足要求
在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“计算节点规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“计算节点个数”。 如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。
表1 在线服务配置 参数 说明 名称 在线服务名称。 状态 在线服务当前状态。 来源 在线服务的来源。 服务ID 在线服务的ID。 描述 您可以单击编辑按钮,添加服务描述。 资源池 当前服务使用的资源池规格。如果使用公共资源池部署,则不显示该参数。 个性化配置 您可以为在线服务的