检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署为在线服务 模型训练完成后,即模型处于“已完成”状态时,可以启动模型的部署操作。 基于盘古大模型打造的专业大模型包括BI专业大模型与单场景大模型支持模型推理,但不支持模型训练。 部署为在线服务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角
当前鉴权方式支持AppCode鉴权和华为云的APIG简易认证方式。
创建自监督微调训练任务 创建自监督微调训练任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,设置模型类型、训练类型、训练模型、训练参数和checkpoints等参数。 其中,训练配置选择
产品优势 海量训练数据 盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析
agentSession对象在外部持久化,在每一轮会话传入agentSession对象中的sessionId,下面的示例代码用一个map对象模拟外部的持久化: /** * 在生产环境下,agentSession建议在外部持久化,而不是在内存中 * 如果使用AssistantAPI,华为会提供持久化能力
创建有监督训练任务 创建有监督微调训练任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,选择模型类型、训练类型、训练方式、训练模型与训练参数。 其中,训练配置选择LLM(大语言模型),训练类型选择有监督训练
运行Agent(Python SDK) 单轮执行 调用run接口运行一个Agent: agent.run("帮我定个下午3点到8点2303会议室") Agent的运行时会进行自我迭代,并且选择合适的工具,在日志中打印最终的执行结果: 用户: 帮我定个下午3点到8点2303会议室 助手
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SFT