检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例:
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b
公共参数。模型ID。通过调用查询AI应用列表接口可以获取。 src_path 否 String batch服务类型必选。批量任务输入数据的OBS路径。 req_uri 否 String batch服务类型必选。批量任务中调用的推理接口,即模型镜像中暴露的REST接口,需要从模型的config
Console:可调出终端进行命令控制 Other:可编辑其他文件 在JupyterLab中新建Terminal 在Terminal中可以执行Python命令,操作终端,如下步骤详细介绍了如何打开JupyterLab的Terminal。 创建Notebook实例,实例处于“运行中”,单击“操作”列的“打开”,进入“JupyterLab”开发页面。
首次训练的epoch初始值,mindspore1.3及以后版本会支持定义epoch_size初始值 # cur_epoch_num = 0 # 判断输出obs路径中是否有模型文件。如果无文件则默认从头训练,如果有模型文件,则加载epoch值最大的ckpt文件当做预训练模型。 if os.listdir(train_url):
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b
必须修改。加载tokenizer与Hugging Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如果设置为true,则会进行模型训练;如果设置为false,则不会进行模型训练。 cutoff_len 4096
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例:
类型type、属性properties,必需属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured
首次训练的epoch初始值,mindspore1.3及以后版本会支持定义epoch_size初始值 # cur_epoch_num = 0 # 判断输出obs路径中是否有模型文件。如果无文件则默认从头训练,如果有模型文件,则加载epoch值最大的ckpt文件当做预训练模型。 if os.listdir(train_url):
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec -it
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec -it
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以下参数取值主要以l
参数类型 描述 data_path 否 String 数据源所在路径。 data_type 否 Integer 数据类型。可选值如下: 0:OBS桶(默认值) 1:GaussDB(DWS)服务 2:DLI服务 3:RDS服务 4:MRS服务 5:AI Gallery 6:推理服务 schema_maps
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以下参数取值主要以l
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b
不同区域支持的AI引擎有差异,请以实际环境为准。 推理支持的AI引擎 在ModelArts创建AI应用时,若使用预置镜像“从模板中选择”或“从OBS中选择”导入模型,则支持如下常用引擎及版本的模型包。 标注“推荐”的Runtime来源于统一镜像,后续统一镜像将作为主流的推理基础镜像。统
不同区域支持的AI引擎有差异,请以实际环境为准。 推理支持的AI引擎 在ModelArts创建AI应用时,若使用预置镜像“从模板中选择”或“从OBS中选择”导入模型,则支持如下常用引擎及版本的模型包。 标注“推荐”的Runtime来源于统一镜像,后续统一镜像将作为主流的推理基础镜像。统
random.seed(seed) torch.backends.cudnn.deterministic = True def obs_transfer(src_path, dst_path): import moxing as mox mox.file.