检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
NLP大模型提供了基模型和功能模型两种类型: 基模型:已经在大量数据上进行了预训练,学习并理解了各种复杂特征和模式。这些模型可以作为其他任务的基础,例如阅读理解、文本生成和情感分析等。基模型本身不具备对话问答能力。 功能模型:在基模型的基础上进行微调,以适应特定任务。功能模型具备对话问答能
时动态构建,即在运行态定义与实例化。 StaticTool(静态工具) 静态工具可以通过继承Tool的方式新增,在_run接口中实现工具的功能,例如: from typing import Type from pangukitsappdev.tool.tool import Tool
Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通
搭建数据清洗流程 将算子拖拽至“输入”、“输出”之间,即可完成清洗流程的搭建,搭建过程中可以通过“执行节点”功能查看算子对数据的清洗效果。算子功能的详细介绍请参见清洗算子功能介绍。 图3 执行节点 用户配置算子后推荐增加、显示备注信息,用于团队其他成员快速了解算子编排。 图4 增加并显示备注信息
restart hdad 进入ModelArts服务,选择所需空间。进入“边缘资源池 > 节点”,在当前设备节点操作列单击“激活”,节点状态将从“未激活”转为“已激活”。 进入“边缘资源池 > 资源池”,单击“创建”。填写资源池名称,选择“ModelArts边缘节点”,在“主控节点”处
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模型,可以根据业务需求开发出诸如营销文案生成、阅读理解、智能对话和代码生成等应用功能。 父主题: 大模型概念类问题
参考数据配比功能介绍。 在训练数据集配比完成后,在单击“创建”或后续修改保存时,会对数据集的有效数据进行统计,确保满足模型训练的要求。 图3 数据配置 基本配置 填写训练数据集名称和描述,选择数据标签。 图4 基本配置 参数填选完成后,单击“立即创建”。 数据配比功能介绍 用户针
of("redis") # mysql sql_cache = Caches.of("sql") 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和用户cache会话下对应的答案2保存到缓存中,参考示例如下: from pangukitsappdev.api.schema
在创建数据集页面,单击“前往OBS”,进入OBS服务页面。 图3 前往OBS 在OBS控制台页面,单击界面右上角“创建桶”。 图4 OBS页面 创建OBS桶时,桶区域需要与盘古大模型区域保持一致。其余配置参数可以使用默认值,详细OBS桶参数说明请参见OBS用户指南。 图5 创建OBS桶 参数填选
模型评估 模型压缩 在线推理 盘古-NLP-N1-基础功能模型-32K - √ - √ √ 盘古-NLP-N2-基础功能模型-4K - √ √ √ √ 盘古-NLP-N2-基础功能模型-32K - √ √ - √ 盘古-NLP-N4-基础功能模型-4K - √ - √ √ 盘古-NLP-BI专业大模型-4K
mysql Cache cache = Caches.of(Caches.SQL); 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和对应的答案2保存到缓存中,可参考以下示例。 import com.huaweicloud.pangu.dev.sdk
最大值:2 缺省值:0 (表示该参数未生效) stream 否 boolean 流式开关。 默认值为false,如果开启流式,请赋值true,同时n参数只能设置为1。开启流式开关后,API会在生成文本的过程中,实时地将生成的文本发送给客户端,而不是等到生成完成后一次性将所有文本发送给客户端。
token比(token/汉字) N1系列模型 0.75 1.5 N2系列模型(不包含盘古-NLP-N2-基础功能模型-4K-Preview) 0.88 1.24 盘古-NLP-N2-基础功能模型-4K-Preview 0.86 1.69 N3系列模型 0.77 1 N4系列模型 0.75 1
文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如,让模型依据要求写邮件、做摘要总结、生成观点见解等。 多轮对话:基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 图1 使用能力调测 表1 能力调测参数说明 参数 说明 温度 用于控制生成文本的多样性和创造力。
盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS数据保护技术说明:https://support.huaweicloud.com/productdesc-obs/obs_03_0375.html 父主题: 安全
提示词工程使用流程 盘古大模型套件平台可以辅助用户进行提示词设计、调优、比较和对提示词通用性进行自动评估等功能,并对调优得到的提示词进行保存和管理。 表1 功能说明 功能 说明 提示用例管理 提示用例集用于维护多组提示词变量的信息,可以用于提示词的调优、比较和评估。 支持对用例集的创建、查询、修改、删除。
password= # sdk.doc.split.css.iam.project= 日志打印配置 SDK日志采用logging模块,参考以下代码开启相应日志打印信息: import logging # 打印在命令行(与打印在文件不同时生效) logging.basicConfig(level=logging
一个规格的基础功能模型)来获取目标场景的数据,以此扩充您的数据集。为了能获取更高质量的数据,可以通过CoT(思维链)、self-instruct等方式批量调用大模型,来获取满足您要求的数据。 人工标注:如果以上两种方案均无法满足您的要求,您也可以使用“数据标注”功能,采用人工标注方式来获取数据。
数据则帮助模型更好地应对各种情况。因此,数据的收集和处理是大模型训练中的关键环节。 盘古大模型套件平台通过提供数据获取、清洗、配比与管理等功能,确保构建高质量的训练数据。 父主题: 准备盘古大模型训练数据集