检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)
lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.909)
会下载历史版本占用磁盘空间。 在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结
String 训练作业的数据集版本ID。 type String 数据集类型。 “obs”:表示使用OBS的数据。 “dataset”:表示使用数据集的数据。 data_url String OBS的桶路径。 表7 model_metric_list属性列表 参数 参数类型 说明
对Notebook的访问。 dev_service String 访问Notebook的途径,枚举值如下: NOTEBOOK:可以通过https协议访问Notebook。 SSH:可以通过SSH协议远程连接Notebook。 ssh_keys Array of strings S
对Notebook的访问。 dev_service String 访问Notebook的途径,枚举值如下: NOTEBOOK:可以通过https协议访问Notebook。 SSH:可以通过SSH协议远程连接Notebook。 ssh_keys Array of strings S
时间。 处理方法 在创建训练作业时,数据可以保存到OBS上。不建议使用TensorFlow、MXNet、PyTorch的OBS接口直接从OBS上读取数据。 如果文件较小,可以将OBS上的数据保存成“.tar”包。训练开始时从OBS上下载到“/cache”目录,解压以后使用。 如果文件较大,可以保存成多个“
使用样例的有标签的数据或者自己通过其他方式打好标签的数据放到OBS桶里,在modelarts中同步数据源以后看不到已标注,全部显示为未标注 OBS桶设置了自动加密会导致此问题,需要新建OBS桶重新上传数据,或者取消桶加密后,重新上传数据。 父主题: Standard数据管理
会下载历史版本占用磁盘空间。 在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结
在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结
当数据集存在较多数据文件(即海量小文件),数据存储在OBS中,训练过程需反复从OBS中读取文件,导致训练过程一直在等待文件读取,效率低。 解决方法 建议将海量小文件,在本地压缩打包。例如打包成.zip格式。 将此压缩后的文件上传至OBS。 训练时,可直接从OBS下载此压缩文件至/cache目录。此
String 训练作业的数据集版本ID。 type String 数据集类型。 “obs”:表示使用OBS的数据。 “dataset”:表示使用数据集的数据。 data_url String OBS的桶路径。 表5 model_metric_list属性列表 参数 参数类型 说明
在计费。 有以下几种可能情况: 因为您在使用ModelArts过程中,将数据上传至OBS进行存储,OBS会根据实际存储的数据进行计费。建议前往OBS管理控制台,清理您不再使用的数据、文件夹以及OBS桶,避免产生不必要的费用。 您在创建Notebook时,选择了云硬盘EVS存储,该
在计费。 有以下几种可能情况: 因为您在使用ModelArts过程中,将数据上传至OBS进行存储,OBS会根据实际存储的数据进行计费。建议前往OBS管理控制台,清理您不再使用的数据、文件夹以及OBS桶,避免产生不必要的费用。 您在创建Notebook时,选择了云硬盘EVS存储,该
LLamaFactory PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS适配PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导 LLM开源大模型基于Lite Cluster适配PyTorch
参数类型 描述 error_code String ModelArts错误码。 error_msg String 具体错误信息。 请求示例 https://{endpoint}/v1/{project_id}/notebooks/a55eba18-1ebf-4e9a-8229-d2d3
参数类型 描述 error_code String ModelArts错误码。 error_msg String 具体错误信息。 请求示例 https://{endpoint}/v1/{project_id}/pools/a55eba18-1ebf-4e9a-8229-d2d3b593a3dc/tags
使用从OBS选择的数据创建表格数据集如何处理Schema信息? Schema信息表示表格的列名和对应类型,需要跟导入数据的列数保持一致。 若您的原始表格中已包含表头,需要开启“导入是否包含表头”开关,系统会导入文件的第一行(表头)作为列名,无需再手动修改Schema信息。 若您的
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed
通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具 方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。具体步骤如下: 在创建OBS桶创建的桶下创建文件夹用以存放模型,例如在桶standard-ll