检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
exec format error”。 这种报错一般是因为所用镜像系统引擎和构建镜像的系统引擎不一致引起的,例如使用的是x86的镜像却标记的是arm的系统架构。 可以通过查看模型详情看到配置的系统运行架构。基础镜像的系统架构详情可以参考推理基础镜像列表。 父主题: 模型管理
服务流量限制 服务流量限制是指每秒内一个服务能够被访问的次数上限。 运行日志输出 默认关闭,在线服务的运行日志仅存放在ModelArts日志系统。 启用运行日志输出后,在线服务的运行日志会输出存放到云日志服务LTS。LTS自动创建日志组和日志流,默认缓存7天内的运行日志。如需了解L
数据未保存至/cache目录或者/home/ma-user/目录(/cache会软连接成/home/ma-user/),导致数据占满系统目录。系统目录仅支持系统功能基本运行,无法支持大数据存储。 部分训练任务会在训练过程中生成checkpoint文件,并进行更新。如更新过程中,未删除历
<训练引擎名称_版本号>-[cpu | <cuda_版本号 | cann_版本号 >]-<py_版本号>-<操作系统名称_版本号>-< x86_64 | aarch64> 表4 训练作业支持的AI引擎 工作环境 系统架构 系统版本 AI引擎与版本 支持的cuda或Ascend版本 TensorFlow x86_64
问题现象 原因分析 原因分析一:密钥文件未放在指定路径,详情请参考安全限制或VS Code文档。请参考解决方法一处理。 原因分析二:当操作系统为macOS/Linux时,可能是密钥文件或放置密钥的文件夹权限问题,请参考解决方法二处理。 解决方法 解决方法一: 请将密钥放在如下路径或其子路径下:
以下案例以缺失OBS权限不足为例,介绍如何进行授权操作。 由于ModelArts的使用权限依赖OBS服务的授权,您需要为用户授予OBS的系统权限。 如果您需要授予用户关于OBS的所有权限和ModelArts的基础操作权限,请参见配置基础操作权限。 如果您需要对用户使用OBS和M
方式,通过在HTTP请求头中添加参数X-Apig-AppCode来实现身份认证,无需复杂的签名过程,适合于客户端环境安全可控的场景,如内网系统之间的API调用。在ModelArts中,支持在部署在线服务时开启AppCode认证(部署模型为在线服务中的“支持APP认证”参数)。对于
企业项目 创建开发环境实例 POST /v1/{project_id}/notebooks modelarts:notebook:create ecs:serverKeypairs:create swr:repository:getNamespace swr:repository:listNamespace
<训练引擎名称_版本号>-[cpu | <cuda_版本号 | cann_版本号 >]-<py_版本号>-<操作系统名称_版本号>-< x86_64 | aarch64> 表4 训练作业支持的AI引擎 工作环境 系统架构 系统版本 AI引擎与版本 支持的cuda或Ascend版本 TensorFlow x86_64
命令。为了方便理解,下面将ModelArts CLI统称为ma-cli。ma-cli支持用户在ModelArts Notebook及线下虚拟机中与云端服务交互,使用ma-cli命令可以实现命令自动补全、鉴权、镜像构建、提交ModelArts训练作业、提交DLI Spark作业、OBS数据复制等。
r_location为必填参数。Image镜像制作规范可参见创建模型的自定义镜像规范。 runtime 否 String 模型运行时环境,系统默认使用python2.7。runtime可选值与model_type相关,当model_type设置为Image时,不需要设置runti
在Notebook实例中运行训练代码,如果数据量太大或者训练层数太多,亦或者其他原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。如果您需要解决“内存不够”的问题,
自动学习和订阅算法有什么区别? 针对不同目标群体,ModelArts提供不同的AI开发方式。 如果您是新手,推荐您使用自动学习实现零代码模型开发。当您使用自动学习,系统会自动选择适合的算法和适合的参数进行模型训练。 如果您是AI开发进阶者,通过订阅算法进行模型训练有更多算法上的选择,并且您可以自定义训练所需的参数。
on device”。 原因分析 ModelArts部署使用的是容器化部署,容器运行时有空间大小限制,当用户的模型文件或者其他自定义文件,系统文件超过Docker size大小时,会提示镜像内空间不足。 处理方法 公共资源池容器Docker size的大小最大支持50G,专属资源池Docker
2/use/downloads.html 需要下载的安装包与操作系统有关,请根据需要选择合适的安装包。 如果操作系统为Linux aarch64,则下载:mindspore-lite-2.2.10-linux-aarch64.tar.gz。 如果操作系统为Linux x86_64,则下载:mindspore-lite-2
问题现象 原因分析 原因分析一:密钥文件未放在指定路径,详情请参考安全限制或VS Code文档。请参考解决方法一处理。 原因分析二:当操作系统为macOS/Linux时,可能是密钥文件或放置密钥的文件夹权限问题,请参考解决方法二处理。 解决方法 解决方法一: 请将密钥放在如下路径或其子路径下:
ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install -r pip-requirements.txt
第一条命令为安装Linux内核头文件和内核镜像,其中版本为5.4.0-144-generic。 第二条命令为重新生成GRUB引导程序的配置文件,用于在启动计算机时加载操作系统, 命令将使用新安装的内核镜像更新GRUB的配置文件,以便在下次启动时加载新的内核。 父主题: Lite Server
机器或资源池无法联通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一:资源下载 Python依赖包下载:进入 scripts/install
2版本或者最新版本进行远程连接。 VS Code安装指导如下: 图2 Windows系统下VS Code安装指导 Linux系统下,执行命令sudo dpkg -i code_1.85.2-1705561292_amd64.deb安装。 Linux系统用户,需要在非root用户进行VS Code安装。 父主题: