检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
规格中带有ARM字样的显示,为ARM CPU架构。 规格中未带有ARM字样的显示,为X86 CPU架构。 ModelArts后台暂不支持下载开源安装包,建议用户在自定义镜像中安装训练所需的依赖包。 自定义镜像需上传至容器镜像服务(SWR)才能在ModelArts上用于训练。 父主题:
下载开源数据集naruto-blip-captions并上传到宿主机上,官网下载地址:https://huggingface.co/datasets/lambdalabs/naruto-blip-captions/tree/main。用户也可以使用自己的数据集。 下载开源数据集
8处理能力。 Manifest文件中文本分类的source数值可以包含中文,其他字段不建议用中文。 Manifest文件可以由用户、第三方工具或ModelArts标注系统生成。 Manifest文件名没有特殊要求,可以为任意合法文件名。 父主题: Manifest管理
全部 自动学习 Workflow 开发工具 算法管理 训练管理 AI应用管理 部署上线 镜像管理 资源池 AI Gallery ModelArts SDK 昇腾生态 自动学习 自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计
备。 数据标注 人工标注 在“未标注”页签图片列表中,单击图片,自动跳转到标注页面。 在标注页面的工具栏中选择合适的标注工具,本示例使用矩形框进行标注。 图6 标注工具 使用标注工具选中目标区域,在弹出的标签文本框中,直接输入新的标签名。如果已存在标签,从下拉列表中选择已有的标签。单击“添加”完成标注。
WebSocket客户端和服务端双向传输数据 WebSocket连接的建立 打开Postman(需选择8.5 以上版本,以10.12.0为例)工具,单击左上角,选择“File>New”,弹出新建对话框,选择“WebSocket Request”(当前为beta版本)功能: 图3 选择WebSocket
我们联系。 常见问题 为什么要下线旧版自动学习? ModelArts自动学习是帮助用户实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。ModelArts团队对自动学习模块进行了架构与前端页面的升级,新版自动学习已于2023年6月上线,并已作为主入口面向用户开放,用户可实现在租户账号下管理个人的作业与资源。
参见表4。 选择标注方式。 在标注页面,上方工具栏提供了常用的表3及表4,系统默认的标注方式为多边形标注。选择多边形标注或极点标注。 标注第一张图片时,一旦选择其中一种,其他所有图片都需要使用此方式进行标注。 图6 工具栏 图7 工具栏 表3 标注方式 图标 使用说明 多边形。在
免费。 免费。 包月购买。 免费。 包月购买。 (建议不小于2U8G,本地存储空间100G,带EIP全动态BGP,按流量10M带宽) × 表2 开源数据集训练效率参考 算法及数据 资源规格 Epoch数 运行时长(hh:mm:ss) 算法:PyTorch官方针对ImageNet的样例 数据:ImageNet分类数据子集
主要面向深度定制化开发场景。 优点:支持深度自定义环境安装,可以方便的替换驱动、固件和上层开发包,具有root权限,结合配置指导、初始化工具及容器镜像可以快速搭建昇腾开发环境。 缺点:资源申请周期长,购买成本高,管理视角下资源使用效率较低。 环境开通指导参考:DevServer资源开通
path导致服务启动调用冲突的,需在实例启动后,再指定PYTHONPATH、sys.path; 用户使用了已开启sudo权限的专属池,使用自定义镜像时,sudo工具未安装或安装错误; 用户使用的cann、cuda环境有兼容性问题; 用户的docker镜像配置错误、网络或防火墙限制、镜像构建问题(文件权
根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表7 SearchLabels 参数 参数类型 描述 labels Array
在“运行时长控制”选择是否指定运行时长。 不限时长:不限制作业的运行时长,AI Gallery工具链服务部署完成后将一直处于“运行中”。 指定时长:设置作业运行几小时后停止,当AI Gallery工具链服务运行时长达到指定时长时,系统将会暂停作业。时长设置不能超过计算资源的剩余额度。 说明:
GLM3-6B(PyTorch)基于DevServer训练指导 Baichuan3-13B(PyTorch)基于DevServer训练指导 推理参考文档: 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:ascendcloud-aigc Controlnet插件支持NPU推理(适配ComfyUI)
免费 包月购买 (Ubuntu 18.04,建议不小于2U8G,本地存储空间100G,带EIP全动态BGP,按流量10M带宽) × 表2 开源数据集训练效率参考 算法及数据 资源规格 Epoch数 预计运行时长(hh:mm:ss) 算法:PyTorch官方针对ImageNet的样例
Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool对外接口说明,包括配置RoCE网卡的IP、网关,配置网络检测对象IP和查询LLDP信息等。 Atlas 800训练服务器备件查询助手
提供图像、文本、音频、视频等多种格式数据的预览,帮助用户识别数据质量。 提供对数据进行多维筛选的能力,用户可以根据样本属性、标注信息等进行样本筛选。 提供12+标注工具,方便用户进行精细化、场景化和专业化的数据标注。 提供基于样本和标注结果进行特征分析,帮助用户整体了解数据的质量。 提升用户数据准备的效率。
npuDriver:NPU驱动 gpuDriver:GPU驱动 ccePlugin:CCE插件 helm:Helm模板 icAgent:ICAgent工具 description String 插件模板描述。 versions Map<String,PluginTemplateVersion>
首先检查npu-smi工具是否可以正常使用,该工具必须能正常使用才能继续后面的固件驱动安装,输入命令“npu-smi info”,完整输出下图内容则为正常。 如果命令未按照下图完整输出(比如命令报错或只输出了上半部分没有展示下面的进程信息),则需要先尝试恢复npu-smi工具(提交工单联系
Arts所有监控指标。 方式三:通过Grafana查看所有监控指标 当AOM的监控模板不能满足用户诉求时,用户可以使用Grafana可视化工具来查看与分析监控指标。Grafana支持灵活而又复杂多样的监控视图和模板,为用户提供基于网页仪表面板的可视化监控效果,使用户更加直观地查看到实时资源使用情况。