检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
受启发于人类视觉系统善于捕获结构信息的特点,研究者们提出了结构相似度指数SSIM(Structure Similarity Index)。SSIM通过计算两个图像在亮度、对比度和结构三个方面的相似度综合得出整体的相似度。其中,图像的亮度和对比度分别由像素点亮度的均值和方差表示,它们的相似度计算方式相同。图像的结构由
的概念, 并将其应用于人脸识别领域。人脸图像被延伸为一系列同心的圆形图像, 计算这些图像的不变矩φ1, 形成不变矩矢量[φ1 (r1) , φ1 (r2) , …, φ1 (rn) ], 作为人脸图像的特征矢量, 在此基础上进行特征分类。我们利用ORL的人脸数据库进行测试并取得了良好的效果
最近一段时间在学习人脸识别的内容,自己整理了相关的学习笔记构成这篇博客,大致分为以下四个部分来总结:人脸问题概述 人脸数据集人脸检测算法人脸识别算法一.人脸问题概述 :1. 人脸识别,指利用分析比较人脸特征信息,包括人脸图像采集、人脸定位、人脸识别以及身份确认查找。人脸识别的困难主要是以下两点:
进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
https://github.com/foamliu/MobileFaceNet-PyTorch 调用: 从左到右,从上到下,依次5个点 这个需要的是facial5points 格式是: [x1,x2,x3,x4,x5][y1,y2,y3,y4,y5]
-CSDN博客_轻量级分割网络 人脸分割BiseNetV2 宣传的: BiSeNet V2出来了!72.6%的mIOU, 156FPS的速度!让分割飞起来! 模型30多m TensorFlow平台的,cpu版时间80ms,人脸抠图,有的不是特别准。 https://github
图具有强大的表达能力,经常被用来构建实体以及实体之间的关系。当物体结构用图来表示时,衡量两个物体的相似性就被转化为计算两个图的相似性。如果你想了解对图的相似性的不同的度量方式以及GES对图的相似性算法的支持情况,可参考博文:聊聊图的相似性
batch_size = 16 # 批大小 epochs = 5 # 训练轮数 数据处理 读取表情识别数据集,文本文件的每行是一个人脸图片的向量。 In [4]: with open("./fer2013/fer2013.csv") as f:
理解相似矩阵 2021-11-14 设 A,BA,BA,B 都是 nnn 阶矩阵,若有可逆矩阵 PPP , 使得 B=P−1APB=P^{-1}APB=P−1AP , 则称BBB是AAA的相似矩阵。 相似矩阵是同一个线性变换在不同基向量下的不同矩阵表示. PPP是基变换矩阵(Base
level_1 输出的关键点进行人脸区域裁剪,获得人脸区域图像作为 level_2 的输入,最终关键点定位信息由 level_2 进行输出。流程如下图所示: 通常进行人脸关键点检测之前,需要进行人脸检测,即将人脸检测获得的人脸图像区域作为人脸关键点检测模型的输入。然而进行人脸检测是相当耗时的,
该API属于FRS服务,描述: 对输入图片进行人脸检测和分析,输出人脸在图像中的位置、人脸关键点位置和人脸关键属性。接口URL: "/v1/{project_id}/face-detect"
该API属于FRS服务,描述: 将两个人脸进行比对,来判断是否为同一个人,返回比对置信度。如果传入的图片中包含多个人脸,选取最大的人脸进行比对。接口URL: "/v1/{project_id}/face-compare"
该API属于FRS服务,描述: 人脸比对是将两个人脸进行比对,来判断是否为同一个人,返回比对置信度。如果传入的图片中包含多个人脸,选取最大的人脸进行比对。接口URL: "/v2/{project_id}/face-compare"
该API属于FRS服务,描述: 添加人脸到人脸库中。将单张图片中的人脸添加至人脸库中,支持添加最大人脸或所有人脸。接口URL: "/v2/{project_id}/face-sets/{face_set_name}/faces"
该API属于FRS服务,描述: 人脸检测是对输入图片进行人脸检测和分析,输出人脸在图像中的位置、人脸关键点位置和人脸关键属性。接口URL: "/v2/{project_id}/face-detect"
该API属于APIHub22579服务,描述: 检测人脸,准确识别多种人脸属性接口URL: "/faceDetect/index"
一连串数据等价判断Case语句、Decode函数Case本身可以运算多字段复杂判断;Decode如果是两个参数时,是作为转码的函数,SELECT decode('MTIzAAE=', 'base64') ;两个数值判断上,两者有相通表达:> Case colA when 'A' then
提供了人脸集操作相关的API。用户可以通过创建人脸集合接口创建属于用户的人脸集;通过添加人脸接口向人脸集中添加图片;通过查询人脸搜索接口,返回与输入人脸相似度最高的N张人脸图片;通过删除人脸接口从人脸集中删除用户不需要的人脸特征;通过删除人脸集接口删除用户创建的人脸集。人脸搜索可
value越大,美颜效果越好,时间越长 10就够了,有明显效果, 15的时候,18ms # coding:utf-8import timeimport numpy as npimport cv2 if __name__ == '__main__':
比较脸部编码列表和候选编码,看看它们是否匹配。 参数: known_face_encodings:已知的人脸编码列表 face_encoding_to_check:待进行对比的单张人脸编码数据 tolerance:两张脸之间有多少距离才算匹配。该值越小对比越严格,0.6是典型的最佳值。