检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String 根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 响应参数 状态码: 200 表4 响应Body参数 参数 参数类型 描述 total Long 总个数,最小值0,最大值2的32次方-1 lists
为什么我的计算结果每次计算时结果都不一样? 当空间开启了“结果差分隐私”开关时, 对敏感数据字段的sum操作都会添加一个差分噪声,来保护单条敏感数据不被泄露。 如果需要更精确的结果, 可联系空间管理员关闭“结果差分隐私”开关, 或者联系敏感字段的合作方修改字段分类。
CCE集群的部署规格根据您的业务量自行选择。 所创建CCE集群的虚拟私有云、子网,应与数据源所在云服务(如MRS Hive、DWS等)的虚拟私有云、子网保持一致,以确保网络互通。 自动创建的CCE集群费用不需要单独结算,当前TICS费用已包含CCE集群费用。
阶段四:基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 前提条件 完成审批防护。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal
} else { fmt.Println(err) } } 更多编程语言的SDK代码示例,请参见API Explorer的代码示例页签,可生成自动对应的SDK代码示例。 状态码 状态码 描述 200 保存联邦学习作业成功 401 操作无权限 500 内部服务器错误
基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的全过程流
在对话框中填写对应的名称和主机的IP地址。 图2 填写信息 单击左侧的新建会话,输入登录的用户名,以root为例。 图3 输入用户名 输入ECS云服务对应的密码,进入对应的服务器。 图4 输入密码 登录成功。 图5 登录成功 方式二:ECS服务控制台 在ECS的服务控制台上,通过IP搜索对应的弹性云服务器。
} else { fmt.Println(err) } } 更多编程语言的SDK代码示例,请参见API Explorer的代码示例页签,可生成自动对应的SDK代码示例。 状态码 状态码 描述 200 查询成功 401 操作无权限 403 Forbidden
} else { fmt.Println(err) } } 更多编程语言的SDK代码示例,请参见API Explorer的代码示例页签,可生成自动对应的SDK代码示例。 状态码 状态码 描述 200 查询实例执行报告成功 401 操作无权限 500 内部服务器错误
发布数据集 企业A将自己的需要预测的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建用于预测的数据集。 企业A预测数据集如下: 大数据厂商B仍使用训练时的提供的全量数据作为预测数据集,没有发布新的数据集。 父主题: 使用TICS联邦预测进行新数据离线预测
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,
基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal + 0.8 * b.supp_bal
TICS(可信智能计算服务)采用包周期的计费模式。为了便于您便捷的下单购买,在控制台购买界面中系统会为您计算好所购买的套餐包价格,您可一键完成整个配置的购买。您还可以通过TICS提供的价格计算器,选择您需要的版本规格,来快速计算出购买TICS的参考价格。 计费项 计费模式 续费 到期与欠费
多方安全计算”页面单击创建,进入sql开发页面,展开左侧的“合作方数据”可以看到企业A、大数据厂商B发布的不同数据集。 单击某一个数据集可以看到数据集的表结构信息。 此时企业A可以编写如下的sql语句统计双方的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum(
根据统计结果,双方可能会发现存在以下两个问题: 碰撞后的数据总数比较小。 碰撞后的数据分布不太均衡,负样本的比例过高。 这种情况下双方可以重复2-5的步骤更新自己提供的数据,多次执行样本分布统计直至达到比较满意的碰撞结果和分布结果。 至此联邦建模的数据准备阶段完成,接下来就是使用准备好的数据进行联邦建模。 父主题:
企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练特征;过低的iv值没有区分性会造成训练资源的浪费,过高的iv值又过于突出可能会过度影响训练出来的模型。
可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行可信联邦学习,联合建模。
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS多方安全计算进行联合样本分布统计
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS可信联邦学习进行联邦建模