检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
file_path String 超参敏感度分析图像的保存路径。 请求示例 如下查询training_job_id为e346206c-6fde-4c33-9dcd-55be17858ceb的作业超参敏感度分析结果中超参batch_size的结果图像保存路径。 GET https:/
击“启动特征分析”。 在弹出的对话框中配置需要进行特征分析的数据集版本,然后单击“确定”启动分析。 “版本选择”,即选择当前数据集的已发布版本。 图1 启动数据特征分析任务 数据特征分析任务启动后,需执行一段时间,根据数据量不同等待时间不同,请耐心等待。当您选择分析的版本出现在“
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
数据校验:对您的数据集的数据进行校验,是否存在数据异常。 预测分析:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项
超参搜索某个trial结果的字段信息。 data Array<Array<String>> 超参搜索某个trial结果的每条数据列表。 请求示例 如下查询training_job_id为04f679b17380d32a2f32c00335c4b5ba作业的超参敏感度分析结果。 GET h
数据集要求 预测分析项目中需要使用到的数据集为表格数据集,数据格式支持csv格式。表格数据集的具体介绍请参见表格数据集。 将原始.xlsx格式的数据转换为.csv格式的数据的方法如下: 将原始表格数据(.xlsx)另存。单击“文件>另存为”,选择本地地址后,下拉选择“保存类型”为“CSV
三部分:失败的可能原因、推荐的解决方案以及对应的日志(底色标红部分)。 图1 训练故障识别 ModelArts Standard会对部分常见训练错误给出分析建议,目前还不能识别所有错误,提供的失败可能原因仅供参考。针对分布式作业,只会显示当前节点的一个分析结果,作业的失败需要综合各个节点的失败原因做一个综合判断。
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使
查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或
使用Msprobe工具分析偏差 观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
创建处理任务,支持创建“特征分析”任务和“数据处理”两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解
工具内部对于随机的控制,是通过设定统一的随机种子进行随机性固定的。但是由于硬件的差异,会导致同样的随机种子在不同硬件上生成的随机数不同。具体示例如下: 由上图可见,torch.randn在GPU和NPU上固定随机种子后,仍然生成不同的随机张量。 对于上述场景,用户需要将网络中的randn
工具使用指导 对于高阶的调优用户,可以使用可视化工具MindStudio Insight查看profiling数据详情并分析可优化点,其提供了丰富的调优分析手段,可视化呈现真实软硬件运行数据,多维度分析性能瓶颈点,支持百卡、千卡及以上规模的可视化集群性能分析,助力开发者天级完成性能调优。
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train
个物体或者物体的计数等。可应用于园区人员穿戴规范检测和物品摆放的无人巡检。 预测分析 预测分析项目,是一种针对结构化数据的模型自动训练应用,能够对结构化数据进行分类或者数据预测。可用于用户画像分析,实现精确营销。也可应用于制造设备预测性维护,根据设备实时数据的分析,进行故障识别。
则应该重点关注计算维度的分析。 图2 单卡性能拆解总体描述 图3 单卡性能拆解详情 多卡slow rank & slow link 下图展示了多卡profiling分析的overall模块,包含集群快慢卡统计数值(slow rank,用于分析计算和任务下发的快慢卡)和集群带宽统计数值(slow
xxx: Connection timed out"如何解决? 问题现象 原因分析 原因分析一:实例配置的白名单IP与本地网络访问IP不符。 解决方法:请修改白名单为本地网络访问IP或者去掉白名单配置。 原因分析二:本地网络不通。 解决方法:检查本地网络以及网络限制。 父主题: VS Code连接开发环境失败故障处理
Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benchmark工具用于精度验证,主要工作原理是:固定模型的输入,通过benchmark工具进行推理,并将推理得到的输出与标杆数据进行相似度度量(余弦相似度和
are too open”如何解决? 问题现象 原因分析 原因分析一:密钥文件未放在指定路径,详情请参考安全限制或VS Code文档。请参考解决方法一处理。 原因分析二:当操作系统为macOS/Linux时,可能是密钥文件或放置密钥的文件夹权限问题,请参考解决方法二处理。 解决方法 解决方法一: