检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在“流水账单”列表页,罗列该账号下各种产品类型,每个任务产生的费用详细。您可以单击“操作 > 详情”,查看使用量详情。可拖动详情下方的进度条,查看“使用量”、“应付金额”等信息。 图1 流水账单 在“明细账单”列表页,罗列了该账号下各种资源的计费模式、使用量和单价等信息。可以按账期、统计维度和统计周期筛选查看明细账单。
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行install.sh文件,来安装依赖以及下载完整代码。命令如下:
MRS and DLI. CPU 否 是 mlstudio-pyspark2.3.2-ubuntu16.04 CPU算法开发和训练基础镜像,包含可以图形化机器学习算法开发和调测MLStudio工具,并预置PySpark2.3.2 CPU 否 是 mindspore_1.10.0-cann_6
注册伙伴 仅当暂未注册伙伴的用户可以注册伙伴。 在“AI Gallery”页面中,单击右上角“我的Gallery > 我的主页”进入个人中心页面。 左侧菜单栏选择“解决方案”进入解决方案列表页,单击右上方“发布”进入合作伙伴申请页面。 如果已经是伙伴用户,则会进入发布解决方案页面。
失败,无法启动 服务部署成功的标志是模型启动完成,如果没有配置健康检查,就无法检测到模型是否真实的启动。 在自定义镜像健康检查接口中,用户可以实现实际业务是否成功的检测。在创建AI应用时配置健康检查延迟时间,保证容器服务的初始化。 因此,推荐在创建AI应用时配置健康检查,并设置合理的延迟检测时间,
输出”支持配置训练的输出参数名称(一般设置为“train_url”),以及输出数据的存储位置。 训练作业运行成功之后,在训练作业列表中,您可以单击作业名称,查看该作业的详情。在“日志”页签搜索输入输出参数名称获取参数信息。 如果需在训练中获取“train_url”、“data_u
练改造(DDP)的完整代码示例,供用户学习参考。 训练流程简述 相比于DP,DDP能够启动多进程进行运算,从而大幅度提升计算资源的利用率。可以基于torch.distributed实现真正的分布式计算,具体的原理此处不再赘述。大致的流程如下: 初始化进程组。 创建分布式并行模型,每个进程都会有相同的模型和参数。
配置节点参数控制分支执行 功能介绍 支持单节点通过参数配置或者获取训练输出的metric指标信息来决定执行是否跳过,同时可以基于此能力完成对执行流程的控制。 应用场景 主要用于存在多分支选择执行的复杂场景,在每次启动执行后需要根据相关配置信息决定哪些分支需要执行,哪些分支需要跳过
据集相同。DWS的详细功能说明,请参考DWS用户指南。 图1 从DWS导入数据 集群名称:系统自动将当前账号下的DWS集群展现在列表中,您可以在下拉框中选择您所需的DWS集群。 数据库名称:根据选择的DWS集群,填写数据所在的数据库名称。 表名称:根据选择的数据库,填写数据所在的表。
是输入参数不合法导致的。您可以根据提示信息进行排查修改即可。 创建模型任务下发成功,但最终模型创建失败。需要从以下几个方面进行排查: 在模型详情页面,查看“事件”页签中的事件信息。根据事件信息分析模型失败原因,进行处理。 如果模型状态为“构建失败”,可以在模型详情页面,查看“事件
Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型 通过AI Gallery的AI应用在线模型体验,可以实现模型服务的即时可用性,开发者无需经历
发布本地AI应用到AI Gallery 场景描述 AI Gallery自定义AI应用能力为您提供了一个自由灵活的AI应用创建方式,您可以基于AI Gallery上提供的基础能力,发挥您的创造力,通过自定义代码的形式,自由地构建出您需要的AI应用形态。 准备AI应用运行文件“app
“一站式”是指AI开发的各个环节,包括数据处理、算法开发、模型训练、创建AI应用、AI应用部署都可以在ModelArts上完成。从技术上看,ModelArts底层支持各种异构计算资源,开发者可以根据需要灵活选择使用,而不需要关心底层的技术。同时,ModelArts支持Tensorflo
设置断点续训练 什么是断点续训练 断点续训练是指因为某些原因(例如容错重启、资源抢占、作业卡死等)导致训练作业还未完成就被中断,下一次训练可以在上一次的训练基础上继续进行。这种方式对于需要长时间训练的模型而言比较友好。 断点续训练是通过checkpoint机制实现。 checkp
F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现声音分类
自动学习项目中,数据来源为数据集中输入位置对应的OBS目录,当目录下的数据无法满足现有业务时,您可以在ModelArts自动学习页面中,添加或删除数据。 添加文件 在“未标注”页签下,可单击页面左上角的“添加数据”,您可以在弹出对话框中,选择本地文件上传。 上传文件格式需满足文本分类型的数据集要求。
DLI的default队列只用作体验,不同账号间可能会出现抢占的情况,需进行资源排队,不能保证每次都可以得到资源执行相关操作。 DLI支持schema映射的功能,即导入的表的schema的字段名称可以不和数据集相同,但类型要保持一致。 父主题: 导入数据到ModelArts数据集
目录中的新数据添加到ModelArts数据集。 删除图片:您可以依次单击选中图片进行删除,也可以勾选“选择当前页”对该页面所有图片进行删除。 所有的删除操作均不可恢复,请谨慎操作。 修改标注 当数据完成标注后,您还可以进入已标注页签,对已标注的数据进行修改。 基于图片修改 在数据
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。