检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
否结束。 通过task name判断的哪个节点是worker。下发的训练作业是一个volcano job,里边会有两个task:一个是ps、一个是worker。两个task的启动命令不同,会自动生成超参--task_name,ps的--task_name=ps,worker的 --task_name=worker。
nda/bin:$PATH pip install ./mindx_elastic-0.0.1-py3-none-any.whl echo "[ma-pre-start] Clean run package" sudo rm -rf ./script ./*.run ./run_package
传递参数形式:将主节点IP地址、节点个数、节点RANK的参数传递至运行的脚本中执行。 多机执行命令为:sh scripts/llama2/0_pl_lora_70b.sh <MASTER_ADDR=xx.xx.xx.xx> <NNODES=4> <NODE_RANK=0> 示例: #第一台节点 sh
获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包
传递参数形式:将主节点IP地址、节点个数、节点RANK的参数传递至运行的脚本中执行。 多机执行命令为:sh scripts/llama2/0_pl_lora_70b.sh <MASTER_ADDR=xx.xx.xx.xx> <NNODES=4> <NODE_RANK=0> 示例: #第一台节点 sh
传递参数形式:将主节点IP地址、节点个数、节点RANK的参数传递至运行的脚本中执行。 多机执行命令为:sh scripts/llama2/0_pl_lora_70b.sh <MASTER_ADDR=xx.xx.xx.xx> <NNODES=4> <NODE_RANK=0> 示例: #第一台节点 sh
xx 4 3 定义变量形式:提前定义主节点IP地址、节点个数、节点RANK的环境变量并赋值,再执行脚本。 示例: # 第一台节点 MASTER_ADDR=xx.xx.xx.xx NNODES=4 NODE_RANK=0 sh scripts/llama2/0_pl_pretrain_70b
xx 4 3 定义变量形式:提前定义主节点IP地址、节点个数、节点RANK的环境变量并赋值,再执行脚本。 示例: # 第一台节点 MASTER_ADDR=xx.xx.xx.xx NNODES=4 NODE_RANK=0 sh scripts/llama2/0_pl_pretrain_70b
description="每训练n个epoch做一次验证")), wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf
CLI配置工具包(云服务器) 如果是在ModelArts Lite等云服务器安装Gallery CLI配置工具,则参考本节将工具包下载至云服务器。 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 左侧菜单栏选择“我的资源 > 云服务器”,单击专属资源池页签进入云服务详情页面。
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
users遵循了Huggingface的“single-file policy”的设计原则,它的三个主要模块Pipeline、Schedulers和预训练模型中,Pipeline和Schedulers都完全遵循了“single-file policy”原则。该设计原则更推荐直接复
AI模型开发的过程,称之为Modeling,一般包含两个阶段: 开发阶段:准备并配置环境,调试代码,使代码能够开始进行深度学习训练,推荐在ModelArts开发环境中调试。 实验阶段:调整数据集、调整超参等,通过多轮实验,训练出理想的模型,推荐在ModelArts训练中进行实验。 两个过程可以相互转换。如开发
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 图像分类项目,图片标注至少需要两个类别,且每个类别至少5张图片,才可以开始自动训练。 父主题: 模型训练
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。