检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
|——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools # 推理工具
OBS提供了很多方式和工具给用户使用,如SDK、API、console、OBS Browser等,ModelArts mox.file提供了一套更为方便的访问OBS的API,允许用户通过一系列模仿操作本地文件系统的API来操作OBS文件。
推理指导(6.3.902) SDXL WebUI基于DevServer适配PyTorch NPU推理指导(6.3.902) Open-Clip基于DevServer适配PyTorch NPU训练指导 moondream2基于DevServer适配PyTorch NPU推理指导 AIGC工具
|——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools # 推理工具
替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-ZeRO-1替换为Deepspeed-ZeRO-2以此类推,重新训练如未解决则执行下一步。
替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-ZeRO-1替换为Deepspeed-ZeRO-2以此类推,重新训练如未解决则执行下一步。
CodeLab入口 ModelArts管理控制台的“总览”页 在“开发工具”区域下方,展示“CodeLab”简介卡片,单击“立即体验”,即可进入。
方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。${container_model_path}请替换为实际使用的模型名称。
本地IDE使用PyCharm工具,远程连接访问,具体参见通过PyCharm远程使用Notebook实例。 本地IDE使用VS Code工具,远程连接访问,具体参见通过VS Code远程使用Notebook实例。
在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 图8 预测样例图 图9 预测结果 当预测界面显示出预测结果时,表示预测功能正常。此时您已经顺利完成本次案例体验。如果显示服务预测失败,可以参考案例服务预测失败解决。
执行推理脚本进行测试,这里使用的推理硬件是CPU,由于CPU执行较慢,验证待迁移的代码可能需要大约15分钟左右才能完成: cd modelarts-ascend/examples/AIGC/stable_diffusion # 必须执行该命令,否则会报错找不到sketch-mountains-input.jpg
CPU 否 是 mlstudio-pyspark2.3.2-ubuntu16.04 CPU算法开发和训练基础镜像,包含可以图形化机器学习算法开发和调测MLStudio工具,并预置PySpark2.3.2 CPU 否 是 mindspore_1.10.0-cann_6.0.1-py_
方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。${container_model_path}请替换为实际使用的模型名称。
方式三:使用Python语言通过AppCode认证鉴权方式发送预测请求 下载Python SDK并在开发工具中完成SDK配置。具体操作请参见在Python环境中集成API请求签名的SDK。 创建请求体,进行预测请求。
当您需要使用集群资源时,可以使用kubectl工具或k8s API来下发作业。此外,ModelArts还提供了扩缩容、驱动升级等功能,方便您对集群资源进行管理。 图2 使用流程 推荐您根据以下使用流程对Lite Cluster进行使用。
使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${model_path}请替换为实际使用的模型名称。
方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。
用户可通过OBS Browser+、obsutil等工具访问和管理OBS桶,将代码、模型文件、数据集等数据上传或下载进行备份。
pip install -r requirements-training.txt pip install -r requirements-test.txt pip install tensorboard Step5 获取训练数据集 使用img2dataset工具下载数据集。
Step9 推理请求 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。