检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
时指定的profile。 注册新镜像 构建完成后,将新镜像注册到ModelArts镜像管理服务中,进而能够在ModelArts中使用该镜像。 有两种方式来注册镜像。 方式一:使用ma-cli image register命令来注册镜像。注册命令会返回注册好的镜像信息,包括镜像id
方式一:在部署边缘服务时添加如下环境变量: MODELARTS_SSL_ENABLED = false 图1 添加环境变量 方式二:在使用自定义镜像导入模型时,创建AI应用页面中“容器调用接口”设置为“http”,再部署边缘服务。 父主题: 边缘服务
在Notebook中通过镜像保存功能制作自定义镜像用于推理 场景说明 本文详细介绍如何将本地已经制作好的模型包导入ModelArts的开发环境Notebook中进行调试和保存,然后将保存后的镜像部署到推理。本案例仅适用于华为云北京四和上海一站点。 操作流程如下: Step1 在Notebook中复制模型包
使用PyCharm ToolKit创建并调试训练作业 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Notebook、代
如果您使用了ModelArts不支持的AI引擎开发模型,也可通过制作自定义镜像,导入ModelArts创建为模型,并支持进行统一管理和部署为服务。 制作流程 场景一: 预置镜像的环境软件满足要求,只需要导入模型包,就能用于创建模型,通过镜像保存功能制作。具体案例参考在Notebook
因流量限控,获取在线服务的IP和端口号次数有限制,每个主账号租户调用次数不超过2000次/分钟,每个子账号租户不超过20次/分钟。 目前仅支持自定义镜像导入模型,部署的服务支持高速访问通道。 操作步骤 使用VPC直连的高速访问通道访问在线服务,基本操作步骤如下: 将专属资源池的网络打通VPC VPC下创建弹性云服务器
创建工作空间。设置工作空间名称为“test-workspace”,授权类型为“internal”,授权的IAM用户名称为“test”。 POST https://{endpoint}/v1/{project_id}/workspaces { "name" : "test-workspace"
nt的组合。 kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
pip介绍及常用命令 pip常用命令如下: pip --help#获取帮助 pip install SomePackage==XXXX #指定版本安装 pip install SomePackage #最新版本安装 pip uninstall SomePackage #卸载软件版本
在部署服务详情中单击“调用指南”,第二行的API接口公网地址即为APP认证调用地址,展开后即可看到AppCode值。 图5 调用指南 在postman调试预测采用AppCode认证: 请求POST URL填APP认证调用地址 请求头Headers中KEY参数为X-Apig-AppCode,VALUE参数为AppCode值
} Step2 构建成功的镜像注册到镜像管理模块 将Step1 在Notebook中构建一个新镜像中构建成功的自定义镜像注册到镜像管理中,方便后续使用。 登录ModelArts控制台,在左侧导航栏中选择“镜像管理”,单击“注册镜像”,进入注册镜像页面。 输入镜像源地址,选择架构和类型后,单击“立即注册”。
使用PyCharm Toolkit插件连接Notebook 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Notebook、代
转换模型后执行推理前,可以使用benchmark工具对MindSpore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benchmark工具用于精度验证,主要工作
repo_summary中的信息表示调优过程中使用到的知识库算子个数或者追加到知识库的算子个数。 AOE自动调优更多介绍可参考Ascend转换工具功能说明。 自动高性能算子生成工具 自动高性能算子生成工具AKG(Auto Kernel Generator),可以对深度神经网络模型中的算子进行优化,并提供特定模式下
环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考安装和配置OBS命令行工具。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil)
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证