检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
也可以映射至容器中,作为容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。为方便访问两个地址可以相同。 ${pvc_name} 为在CCE集群关联SFS Turbo步骤中创建的PVC名称。 在设置容器中需要的CPU与内存大小时,可通过运行以下命令查看申请的节点机器中具体的CPU与内存信息。 kubectl
)和本地上传。 数据集中的数据导入入口 数据集中的数据导入有5个入口。 创建数据集时直接从设置的数据导入路径中自动同步数据。 创建完数据集后,在数据集列表页面的操作栏单击“导入”,导入数据。 图1 在数据集列表页导入数据 在数据集列表页面,单击某个数据集的名称,进入数据集详情页中,单击“导入>导入”,导入数据。
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
后,由于用户AI开发业务的变化,对于资源池资源量的需求可能会产生变化,面对这种场景,ModelArts提供了扩缩容功能,用户可以根据自己的需求动态调整。 升级Lite Cluster资源池驱动:当资源池中的节点含有GPU/Ascend资源时,用户基于自己的业务,可能会有自定义GP
景。 Standard的模型训练功能提供了界面化的训练调试环境和生产环境,用户可以使用自己的数据和算法,利用Standard提供的计算资源开展模型训练。具体请参见使用ModelArts Standard训练模型。 Standard的推理部署功能提供了界面化的推理部署生产环境,AI
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新dataset_info.json文件;请务必在dataset_info
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
也可以映射至容器中,作为容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。为方便访问两个地址可以相同。 ${pvc_name} 为在CCE集群关联SFS Turbo步骤中创建的PVC名称。 在设置容器中需要的CPU与内存大小时,可通过运行以下命令查看申请的节点机器中具体的CPU与内存信息。 kubectl
授权”。 在弹出的“添加授权”窗口中,选择: 授权对象类型:所有用户 委托选择:新增委托 权限配置:普通用户 选择完成后勾选“我已经详细阅读并同意《ModelArts服务声明》”,然后单击“创建”。 图1 配置委托访问授权 完成配置后,在ModelArts控制台的权限管理列表,可查看到此账号的委托配置信息。
卡死等)导致训练作业还未完成就被中断,下一次训练可以在上一次的训练基础上继续进行。这种方式对于需要长时间训练的模型而言比较友好。 断点续训练是通过checkpoint机制实现。 checkpoint的机制是:在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重
项目ID通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为GET https://{iam-endpoint}/v3/projects,其中{iam-endpoint}为IAM的终端节点,可以从地区和终端节点处获取。 响应示例如下,例如ModelArts部署的区域为"cn-no
模型进行调优,获得更合适的模型。 场景描述 从“我的模型”中选择一个模型进行调优,当模型完成调优作业后会产生一个新的模型,呈现在“我的模型”列表中。 约束限制 表1列举了支持模型调优的模型,不在表格里的模型不支持使用MaaS调优模型。 表1 支持模型微调的模型 模型名称 全参微调
train_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有
train_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有
参来迭代模型;或在实验阶段,有一个可以优化训练的性能的想法,则会回到开发阶段,重新优化代码。 图1 模型开发过程 ModelArts提供了模型训练的功能,方便您查看训练情况并不断调整您的模型参数。您还可以基于不同的数据,选择不同规格的资源池用于模型训练。 请参考以下指导在ModelArts
train_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有
Cloud)可以为您构建隔离的、用户自主配置和管理的虚拟网络环境,操作指导请参考创建虚拟私有云和子网。 创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS
train_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有
如果您需要长期使用当前按需购买的ModelArts专属资源池,可以将该专属资源池转为包年/包月计费模式,以节省开支。按需计费变更为包年/包月会生成新的订单,用户支付订单后,包年/包月资源将立即生效。 假设用户于2023/04/18 15:29:16购买了一台按需计费的专属资源池,由于业务需要,于2023/04/18
调用预测请求的账号名。 DOMAIN_ID 调用预测请求的账号ID。 PROJECT_NAME 调用预测请求的项目名。 PROJECT_ID 调用预测请求的项目ID。 USER_NAME 调用预测请求的用户名。 USER_ID 调用预测请求的用户ID。 “#”表示引用变量,匹配的字符串需要用单引号。