检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
# 安装量化模块的脚本 ... 具体操作如下: 参考Step1 环境准备创建pod准备量化环境。 执行如下命令进入容器,并进入AutoSmoothQuant目录下 kubectl exec -it {pod_name}
pip install --upgrade accelerate optimum transformers 设置GPTQConfig的参数,并且创建一个数据集用于校准量化的权重,以及一个tokenizer用于准备数据集。 from transformers import AutoModelForCausalLM
# 安装量化模块的脚本 ... 具体操作如下: 参考Step1 环境准备创建pod准备量化环境。 执行如下命令进入容器,并进入AutoSmoothQuant目录下 kubectl exec -it {pod_name}
pip install --upgrade accelerate optimum transformers 设置GPTQConfig的参数,并且创建一个数据集用于校准量化的权重,以及一个tokenizer用于准备数据集。 from transformers import AutoModelForCausalLM
pip install --upgrade accelerate optimum transformers 设置GPTQConfig的参数,并且创建一个数据集用于校准量化的权重,以及一个tokenizer用于准备数据集。 from transformers import AutoModelForCausalLM
point:点。 polyline:折线。 @modelarts:from_type String 内置属性:三元组关系标签的起始实体类型,创建关系标签时必须指定,该参数仅文本三元组数据集使用。 @modelarts:rename_to String 内置属性:重命名后的标签名。 @modelarts:shortcut
yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl
yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl
参数 是否必选 参数类型 描述 workspace_id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token
model1.load_state_dict(state_dict) 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
日志提示“No module name 'unidecode'” 分布式Tensorflow无法使用“tf.variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误
Configuration”,找到作业名称,单击右上角的减号并确认删除。 图2 删除配置信息 在弹出的确认对话框中,确认信息无误后,单击“是”删除对应配置信息。删除后您可以创建新的训练作业配置并提交训练作业。 父主题: PyCharm Toolkit使用
否,请执行步骤3。 如能访问OBS,单击右上方登录的用户,在下拉列表中选择“我的凭证”。请根据“如何管理访问密钥”操作指导,确认当前AK/SK是否是当前账号创建的AK/SK。 是,请联系提交工单处理。 否,请根据“如何管理访问密钥”操作指导更换为当前账号的AK/SK。 请确认当前账号是否欠费。 是
yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl
yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl
用户指定的network名称。 os.modelarts/workspace.id String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表12 NetworkMetadataAnnotations 参数 参数类型 描述 os
工作空间管理权限 表1 工作空间管理细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 创建工作空间 POST /v1/{project_id}/workspaces modelarts:workspace:create - √ √ 查询工作空间列表 GET
运行后端的配置等。下文以Python接口为例。 使用MindSpore Lite推理框架执行推理并使用昇腾后端主要包括以下步骤: 创建运行上下文:创建Context,保存需要的一些基本配置参数,用于指导模型编译和模型执行,在昇腾迁移时需要特别指定target为“Ascend”,以及对应的device_id。
同步OBS图片数据 添加数据:您可以将本地图片快速添加到ModelArts,同时自动上传至创建项目时所选择的OBS路径中。单击“添加数据”,根据弹出的对话框的引导,输入正确的数据并添加。 同步新数据:将图片数据上传至创建项目时指定的OBS目录,然后单击“同步新数据”,快速将原OBS目录中的新数据添加到ModelArts数据集。
WorkPath object 数据处理任务的工作目录。 workspace_id String 数据处理任务的工作空间ID。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表3 ProcessorDataSource 参数 参数类型 描述 name String