检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Lite池故障处理流程 对于ModelArts Lite资源池,每个节点会以DaemonSet方式部署node-agent组件,该组件会检测节点状态,并将检测结果写到K8S NodeCondtition中。同时,节点故障指标默认会上报到AOM,您可在AOM配置告警通知。 当发生节点异常时
"quota" : 20, "min_quota" : -1, "name_cn" : "自动学习(图像分类、物体检测、声音分类)训练时长", "unit_cn" : "分钟", "name_en" : "ExeML training duration
成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
创建自动学习项目有个数限制吗? ModelArts自动学习,包括图像分类项目、物体检测项目、预测分析项目、声音分类和文本分类项目。您最多只能创建100个自动学习项目。 父主题: 创建项目
lf, task_name=None, task_type=None, **kwargs) 示例代码 示例一:基于图像类型的数据集创建物体检测标注任务。 from modelarts.session import Session from modelarts.dataset import
如何使用soft NMS方法降低目标框堆叠度 目前华为云AI市场订阅的算法YOLOv3-Ascend(物体检测/TensorFlow)中可以使用soft NMS,YOLOv5算法文档中没有看到相关支持的信息,需要自定义算法进行使用。 父主题: 功能咨询
日志提示“label_map.pbtxt cannot be found” 问题现象 使用目标检测算法训练时,训练作业日志运行出现如下报错:ERROR:root:label_map.pbtxt cannot be found. It will take a long time to
自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明
软件名称 说明 下载地址 插件代码包 AscendCloud-3rdAIGC-6.3.907-xxx.zip 文件名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
软件名称 说明 下载地址 插件代码包 AscendCloud-3rdAIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
训练作业一直在等待中(排队)? 训练作业状态一直在等待中状态表示当前所选的资源池规格资源紧张,作业需要进行排队,请耐心等待。如想降低排队时间,根据您所选资源池的类型,有以下建议: 公共资源池: 公共资源池资源较少,高峰期如举办相关活动时会存在资源不足情况。有以下方法可以尝试: 如
创建导出任务 将当前数据集的样本导出到指定的OBS路径下。仅支持图像分类、物体检测、图像分割和自由格式数据集。 dataset.export_data(path) 示例代码 导出数据集到OBS目录 from modelarts.session import Session from
字字符组成。 训练数据: 训练数据列数一致,总数据量不少于100条不同数据(有一个特征取值不同,即视为不同数据)。 训练数据列内容不能有时间戳格式(如:yy-mm-dd、yyyy-mm-dd等)的数据。 如果某一列的取值只有一种,会被视为无效列。请确保标签列的取值至少有两个且无数据缺失。
begin_timestamp Integer 实例排队的开始时间,13位时间戳。 remain_time Integer 排到队的剩余时间,单位为秒。 end_timestamp Integer 实例排队的预计停止时间,13位时间戳。 rank Integer 实例在队列中的排位。 表18 user字段数据结构说明
计算节点个数 默认为1。您可以根据您的实际情况选择,最大为5。 针对“物体检测”类型的标注作业,选择“主动学习”时,只支持识别和标注矩形框。 图1 启动智能标注(图像分类) 图2 启动智能标注(物体检测) 图3 启动智能标注(预标注) 完成参数设置后,单击“提交”,即可启动智能标注。
AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。
String 分页查询的上一页标记,内容为UUID字符串,查询第一页时为空。 since 否 Integer 事件开始时间戳。 until 否 Integer 事件结束时间戳。 type 否 String 事件类型。可选值如下: Normal:正常 Warning:异常 请求参数 无 响应参数
RunningRecord 参数 参数类型 描述 start_at Integer 本次运行开始时间的unix时间戳,单位为秒(s)。 end_at Integer 本次运行结束时间的unix时间戳,单位为秒(s)。 start_type String 本地运行的启动方式: init_or_r
不同类型的数据集支持的导入方式如表1所示。 表1 不同数据集支持的导入方式 数据集类型 OBS目录导入 Manifest文件导入 备注 图像分类 支持 支持 - 物体检测 支持 支持 - 图像分割 支持 支持 - 文本分类 支持 支持 - 命名实体 不支持 支持 - 文本三元组 不支持 支持 - 声音分类 支持
任务完成之后会在test-benchmark目录下生成excel表格: 精度结果 LLaMAFactory_train_accuracy_benchmark_<版本号>_<时间戳>.xlsx 样例截图: 父主题: 训练benchmark工具