检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
running = false } } } 生成Table1和Table2,并使用Join对Table1和Table2进行联合查询,打印输出结果。 object SqlJoinWithSocket { def main(args: Array[String]):
准备Storm应用开发和运行环境 开发环境准备分为应用开发客户端和应用提交客户端;应用开发一般是在Windows环境下进行;应用提交一般是在Linux环境下进行。 准备开发环境 在进行二次开发时,要准备的开发和运行环境如表1所示: 表1 开发环境 准备项 说明 操作系统 开发环境
准备MapReduce开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。
准备HBase应用开发和运行环境 准备开发环境 在进行二次开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。
准备HDFS应用开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows7以上版本。 运行环境:Windows或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。
Spark与其他组件的关系 Spark和HDFS的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。 分解来看,Spark分成控制端(D
Spark2x与其他组件的关系 Spark和HDFS的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。 分解来看,Spark分成控制端
准备HDFS应用开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows7以上版本。 运行环境:Windows或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。
HBase数据读写示例安全认证(单集群场景) 场景说明 在安全集群环境下,各个组件之间的相互通信不能够简单的互通,而需要在通信之前进行相互认证,以确保通信的安全性。HBase应用开发需要进行ZooKeeper和Kerberos安全认证。用于ZooKeeper认证的文件为“jaas
使用SpringBoot生产消费Kafka集群数据 本章节适用于MRS 3.3.0及之后版本。 功能简介 通过SpringBoot实现对Kafka集群生产消费的功能。 代码样例 通过SpringBoot实现Kafka生产消费的样例代码如下: @RestController public
提升HBase实时写数据效率 操作场景 需要把数据实时写入到HBase中或者对于大批量、连续put的场景。 本章节适用于MRS 3.x及之后版本。 前提条件 调用HBase的put或delete接口,把数据保存到HBase中。 操作步骤 写数据服务端调优 参数入口:登录FusionInsight
提升HBase实时写数据效率 操作场景 需要把数据实时写入到HBase中或者对于大批量、连续Put的场景。 前提条件 调用HBase的put或delete接口,把数据保存到HBase中。 操作步骤 写数据服务端调优 参数入口:登录FusionInsight Manager,选择“集群
stream.context。 dstream.context是Streaming Context启动时从output Streams反向查找所依赖的DStream,逐个设置context。如果Spark Streaming应用创建1个输入流,但该输入流无输出逻辑时,则不会给它设
准备Storm应用开发和运行环境 开发环境准备分为应用开发客户端和应用提交客户端;应用开发一般在Windows环境下进行;应用提交一般在Linux环境下进行。 准备开发环境 在进行二次开发时,要准备的开发和运行环境如表1所示: 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows
准备HDFS应用开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows7以上版本。 运行环境:Windows或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。
stream.context。 dstream.context是Streaming Context启动时从output Streams反向查找所依赖的DStream,逐个设置context。若Spark Streaming应用创建1个输入流,但该输入流无输出逻辑时,则不会给它设置
准备HDFS应用开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows7以上版本。 运行环境:Windows或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。
Scala样例代码 功能介绍 在Spark应用中,通过使用Streaming调用kafka接口来获取数据,然后把数据经过分析后,找到对应的HBase表记录,再写到HBase表。 代码样例 下面代码片段仅为演示,具体代码参见:com.huawei.bigdata.spark.examples
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的