检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ect}/。 如果报错路径为训练数据路径,需要在以下两个地方完成适配,具体适配方法请参考自定义算法适配章节的输入输出配置部分: 在创建算法时,您需要在输入路径配置中设置代码路径参数,默认为“data_url”。 您需要在训练代码中添加超参,默认为“data_url”。使用“dat
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: OBS操作相关故障
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 云上迁移适配故障
如何通过docker镜像启动容器? 如何在ModelArts的Notebook中配置Conda源? ModelArts的自定义镜像软件版本匹配有哪些注意事项? 镜像在SWR上显示只有13G,安装少量的包,然后镜像保存过程会提示超过35G大小保存失败,为什么? 如何保证自定义镜像能不因为超过35G而保存失败?
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: OBS操作相关故障
是否有精度问题。预检工具使用包含以下三步:dump、run_ut以及api_precision_compare。基本步骤如下: 通过pip安装msprobe工具。 # shell pip install mindstudio-probe 获取NPU和GPU的dump数据。 PyT
表1 路径参数 参数 是否必选 参数类型 描述 model_id 是 String 需要删除的AI应用ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 cascade 否 Boolean
调用批量更新样本标签根据获取的智能标注样本列表确认智能标注结果。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 已准备好用于智能标注的图像分类的数据集,并获取数据集ID,例如“6mHUG
spec_id Long 训练作业资源规格ID。 core String 资源规格的核数。 cpu String 资源规格CPU内存。 gpu_num Integer 资源规格gpu的个数。 gpu_type String 资源规格gpu的类型。 worker_server_num
在ModelArts的Notebook中使用不同的资源规格训练时为什么训练速度差不多? 如果用户的代码中训练任务是单进程的,使用Notebook 8核64GB,72核512GB训练的速度是基本一致的,例如用户用的是2核4GB的资源,使用4核8GB,或者8核64GB效果是一样的。
configuration中选择Python File,其他语言操作类似。如下图所示: 步骤三:编辑launch.json,增加justMyCode": false配置,如下所示。 { "version": "0.2.0", "configurations":
训练和服务部署,工作流发布至运行态后,部分运行的开关默认关闭,节点全部运行。用户可在权限管理页面打开开关,选择指定的场景进行运行。 部分运行能力支持同一个节点被定义在不同的运行场景中,但是需要用户自行保证节点之间数据依赖的正确性。另外,部分运行能力仅支持在运行态进行配置运行,不支持在开发态进行调试。
请求Body参数 参数 是否必选 参数类型 描述 email 否 String 团队标注成员邮箱。 samples 否 Array of SampleLabels objects 更新的样本列表。 表3 SampleLabels 参数 是否必选 参数类型 描述 labels 否 Array
Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_sdxl_finetune_train.sh 训练执行脚本中配置了保存checkpoint的频率,每500steps保存一次,如果磁盘空间较小,这个值可以改大到5000,避免磁盘空间写满,导致训练失败终止。
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题
Long 训练作业资源规格ID。 core String 资源规格的核数。 cpu String 资源规格CPU内存。 gpu Boolean 是否使用gpu。 gpu_num Integer 资源规格gpu的个数。 gpu_type String 资源规格gpu的类型。 worker_server_num
图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型管理 > 模型”页面中直接部署。 支持发布至市场 将产生的模型发布至AI Gallery,共享给其他用户。
动训练。 训练完成后,您可以在预测分析节点中单击查看训练详情,如“标签列”和“标签列数据类型”、“准确率”、“评估结果”等。 该示例为二分类的离散型数值,评估效果参数说明请参见表1。 不同类型标签列数据产生的评估结果说明请参见评估结果说明。 图1 模型评估报告 同一个自动学习项目
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train