检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String 资源约束,可选值如下: 资源类型(flavor_type),对应值可选择CPU、GPU或Ascend; 是否支持多卡训练(device_distributed_mode),对应值可选择支持(multiple)、不支持(singular); 是否支持分布式训练(host
完成访问授权配置后,再次提交作业即可。 请排查所填写的Data Path in OBS是否存在,文件夹下是否有数据文件,如果没有,需要在OBS创建目录并上传训练数据到该目录。 父主题: PyCharm Toolkit使用
SD WebUI推理性能测试 以下性能测试数据仅供参考。 开启Flash Attention 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1*
查询资源池的所有标签 功能介绍 查询用户当前项目下资源池的所有标签,默认查询所有工作空间,无权限的工作空间不返回标签数据。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI
方法二:新建一个文件夹,移动checkpoints文件夹的数据到新建的文件夹下。 执行mkdir xxx命令,新建一个文件夹,例如“xxx”(不要用checkpoints关键字命名) 然后移动checkpoints文件夹的数据到新建的文件夹下,删除根目录下checkpoints文件夹即可。
方的时候,出现错误。 原因分析 出现该问题的可能原因如下: 程序运行过程中,产生了core文件,core文件占满了"/"根目录空间。 本地数据、文件保存将"/cache"目录3.5T空间用完了。 云上训练磁盘空间一般指如下两个目录的磁盘空间: “/”根目录,是docker中配置项“base
Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线
is_local_source=True) 参数解释: is_local_source:可选参数,默认为False,指定训练数据的保存位置。 False:训练数据保存在参数obs_path指定的位置中; True:训练数据保存在notebook中,由local_path指定。 obs_path:obs地址。根据i
否 Object 实例定义,如表3 spec定义数据结构说明所示。 表3 spec定义数据结构说明 参数 是否必选 参数类型 说明 auto_stop 否 Object 自动停止参数,如表4所示。 表4 auto_stop定义数据结构说明 参数 是否必选 参数类型 说明 enable
本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址:
文件的启动流程说明请参见预置框架启动文件的启动流程说明。 训练输入路径参数 训练数据需上传至OBS桶或者存储至数据集中。在训练代码中,用户需解析输入路径参数。系统后台会自动下载输入参数路径中的训练数据至训练容器的本地目录。请保证您设置的桶路径有读取权限。在训练作业启动后,Mode
s相同,包含华北-北京一、华北-北京四、华东-上一、华南-广州(以界面上实际支持的区域为准)。 下载数据集。 在AI Gallery中下载数据集时,不管是下载至OBS还是下载至数据集,均需设置对应的使用区域。支持的区域与ModelArts相同,包含华北-北京一、华北-北京四、华东
(可选,如果选择使用humaneval数据集) pip install -e . # 可选,如果选择使用humaneval数据集 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型
dataset_id String 训练作业的数据集ID。 dataset_version String 训练作业的数据集版本ID。 type String 数据集类型。 “obs”:表示使用OBS的数据。 “dataset”:表示使用数据集的数据。 data_url String OBS的桶路径。
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
obs:object:GetObject obs:object:PutObject 训练作业启动前下载数据、模型、代码。 训练作业运行中上传日志、模型。 建议配置。 操作步骤 本案例场景为单机单卡场景下创建训练作业,数据和代码存储在OBS服务的并行文件系统下,创建自定义镜像训练作业。 使用主用户账号登
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。
运行训练代码,出现dead kernel,并导致实例崩溃 在Notebook实例中运行训练代码,如果数据量太大或者训练层数太多,亦或者其他原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。
如果在此之前是有进行数据复制的,每个节点复制的速度不是同一个时间完成的,然后有的节点没有复制完,其他节点进行torch.distributed.init_process_group()导致超时。 处理方法 如果是多个节点复制不同步,并且没有barrier的话导致的超时,可以在复制数据之前,先进行torch
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发