检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署后的AI应用是如何收费的? ModelArts支持将AI应用按照业务需求部署为服务。训练类型不同,部署后的计费方式不同。 将AI应用部署为服务时,根据数据集大小评估模型的计算节点个数,根据实际编码情况选择计算模式。 具体计费方式请参见ModelArts产品价格详情。部署AI应用可
ut_storage,'obs://dyyolov8/yolov5_test/yolov5-7.0/datasets'), mox这个函数怎么定义以变量的形式填写OBS路径? 解决方案 变量定义参考如下示例: input_storage = './test.py' import moxing
发基于PyTorch、TensorFlow和MindSpore等引擎的AI模型。 支持通过JupyterLab工具在线打开Notebook,具体请参见通过JupyterLab在线使用Notebook实例进行AI开发。 支持本地IDE的方式开发模型,通过开启SSH连接,用户本地ID
diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd /home/ma-user/diffusers sh diffusers_sdxl_controlnet_train.sh 训练执行成功如下图所示。
动态扩充云硬盘EVS容量 动态挂载OBS并行文件系统 查看Notebook实例事件 Notebook Cache盘告警上报 父主题: 使用Notebook进行AI开发调试
使用自定义镜像创建AI应用 如果您使用了ModelArts不支持的AI引擎开发模型,也可通过制作自定义镜像,导入ModelArts创建为AI应用,并支持进行统一管理和部署为服务。 创建AI应用的自定义镜像规范 从0-1制作自定义镜像并创建AI应用 资源池 使用ModelArts进行AI开发时
合的机制。从项目管理角度上需要增加一个AI项目的工作流程机制管理,流程管理不是一个简单的流水线构建管理,它是一个任务管理体系。 这个工具需要具备以下的能力: 流程分析:沉淀行业样例流水线,帮助用户能快速进行AI项目的参考设计,启动快速的AI项目流程设计。 流程定义与重定义:以流水
上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
公共镜像:即预置在ModelArts内部的AI引擎。 可以选择界面显示的公共镜像,也可以单击“前往AI Gallery获取更多镜像”进入AI Gallery镜像页面。AI Gallery上发布了一些较高版本的PyTorch、MindSpore、TensorFlow镜像。进入AI Gallery镜像页
自动学习 物体检测 基于AI Gallery口罩数据集,使用ModelArts自动学习的物体检测算法,识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“图像分类”的AI模型的训练和部署。
进入JupyterLab主页后,可在“Notebook”区域下,选择适用的AI引擎,单击后将新建一个对应框架的ipynb文件。 由于每个Notebook实例选择的工作环境不同,其支持的AI框架也不同,下图仅为示例,请根据实际显示界面选择AI框架。 图4 选择AI引擎并新建一个ipynb文件 新建的ipynb文件将呈现在左侧菜单栏中。
模型来源不同。订阅模型,模型来源于AI Gallery;云服务订阅模型,模型来源于其他AI服务开发的模型。 订阅模型列表 在ModelArts的“模型管理>订阅模型”页面中,罗列了从AI Gallery订阅的所有模型。 订阅模型,可通过如下操作获得: “订阅模型”列表,单击“AI Gallery订阅模型”,跳转至“AI
更新Notebook实例 变更镜像 ModelArts允许用户在同一个Notebook实例中切换镜像,方便用户灵活调整实例的AI引擎。Notebook实例状态需在“停止”中才可以变更镜像。 登录ModelArts管理控制台,在左侧菜单栏中选择“开发环境 > Notebook”,进入Notebook页面。
用于支持大模型场景下的AI应用管理和服务部署。 约束与限制 需要申请单个AI应用大小配额和添加使用节点本地存储缓存的白名单。 需要使用自定义引擎Custom,配置动态加载。 需要使用专属资源池部署服务。 专属资源池磁盘空间需大于1T。 操作事项 申请扩大AI应用的大小配额和使用节点本地存储缓存白名单
indSpore引擎的AI模型。具体操作流程如图1 使用JupyterLab在线开发调试代码所示。 图1 使用JupyterLab在线开发调试代码 操作步骤 创建Notebook实例。 在ModelArts控制台创建一个Notebook实例,选择要使用的AI框架。具体参见创建Notebook实例。
”。 图4 资源监控 分享副本到AI Gallery。单击右上角的,将修改后的Notebook样例保存分享到AI Gallery中,供自己或他人学习使用。 图5 分享到AI Gallery 分享成功后,通过分享链接可以打开分享的副本,也可以在AI Gallery中找到分享的Notebook。
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd /home/ma-user/diffusers sh diffusers_sdxl_controlnet_train.sh 训练执行成功如下图所示。
查看Workflow工作流运行记录 管理Workflow工作流 重试/停止/运行Workflow节点 父主题: 使用Workflow实现低代码AI开发
ModelArts数据集保存到容器的哪里? ModelArts支持哪些AI框架? ModelArts训练和推理分别对应哪些功能? 如何查看账号ID和IAM用户ID ModelArts AI识别可以单独针对一个标签识别吗? ModelArts如何通过标签实现资源分组管理 为什么资源充足还是在排队?