检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
low。 删除后的Workflow无法恢复,请谨慎操作。 删除Workflow后,对应的训练作业和在线服务不会随之被删除,需要分别在“模型训练>训练作业”和“模型部署>在线服务”页面中手动删除任务。 父主题: 管理Workflow
集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train.sh 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_sdxl_lora_train
ype类型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8
String API所属的服务ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Toke
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q awq 或者--quantization awq 父主题:
Server算力资源和镜像版本配套关系 Lite Server提供多种NPU、GPU镜像,您可在购买前了解当前支持的镜像及对应详情。 NPU Snt9裸金属服务器支持的镜像详情 镜像名称:ModelArts-Euler2.8_Aarch64_Snt9_C78 表1 镜像详情 软件类型 版本详情 操作系统
户的授权内容,查看授权详情。如果没有对应权限,需要到统一身份认证服务给对应委托中加上对应权限。 图1 权限管理 图2 查看权限详情和去IAM修改委托权限 图3 给委托添加授权 将镜像设置成私有镜像 登录容器镜像服务(SWR),左侧导航栏选择“我的镜像”,查看镜像详情,单击右上角“编辑”按钮,把镜像类型修改为“私有”。
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。 --t
该镜像无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 说明: 建议写清楚模型的使用方法,方便使用者更好的完成训练、推理任务。 表2 任务类型支持的AI Gallery工具链服务 任务类型 微调大师 在线推理服务 AI应用 文本问答/文本生成 支持 支持 支持
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step6 启动推理服务,在启动服务时添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化
认证证书 合规证书 华为云服务及平台通过了多项国内外权威机构(ISO/SOC/PCI等)的安全合规认证,用户可自行申请下载合规资质证书。 图1 合规证书下载 资源中心 华为云还提供以下资源来帮助用户满足合规性要求,具体请查看资源中心。 图2 资源中心 销售许可证&软件著作权证书
使用场景 随着模型规模和数据集的急剧增长,需要利用大规模的训练集训练大规模的神经网络。在大规模集群分布式训练时,会遇到集群中某个芯片、某台服务器故障,导致分布式训练任务失败。优雅退出是指中断的训练任务支持自动恢复,并可以在上一次训练中断的基础上继续训练,而不用从头开始。 约束限制
致需要10+小时。 使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。 父主题: 推理模型量化
buildkit由两部分组成: buildkitd(服务端):负责镜像构建,目前支持runc和containerd作为镜像构建环境,默认是runc。 buildkitctl(客户端):负责解析Dockerfile文件,并向服务端buildkitd发出构建请求。 下载并解压buildkit程序。
ype类型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8
--per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant 父主题:
如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: --model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
3fn"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16