检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
阶段六:统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal + 0.8 * b.supp_bal
数据集发布 前提条件 完成数据准备工作。 操作步骤 进入TICS服务控制台。 在计算节点管理中,找到购买的计算节点,通过登录地址,进入计算节点控制台。 图1 前往计算节点 登录计算节点后,在下图所述位置新建连接器。 图2 新建连接器 输入正确的连接信息,建立数据源和计算节点之间的安全连接。
查看求交结果 隐私求交作业执行完成后,企业A可以通过单击“历史作业 > 查看结果”看到隐私求交作业的运行结果,包括交集的大小和交集文件的路径。 打开obs到指定目录下查看,可以看到有两个结果文件,其中一个是交集记录的序号alignedIds.csv,另一个是交集记录的id alignedOriginalIds
查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数
创建并运行隐私求交作业 企业A单击“作业管理 > 隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景
评估型横向联邦作业流程 基于横向联邦作业的训练结果,可以进一步评估横向联邦模型,将训练好的模型用于预测。 选择对应训练型作业的“历史作业”按钮,获取最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic
乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20)
阶段五:基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了秘密分享加密。DAG图显示了“psi +
查询特征选择执行结果 功能介绍 查询特征选择执行结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/features-selection-result
查询联邦预测作业列表 功能介绍 查询联邦预测作业列表 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-predicted-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id
基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练
保存横向联邦学习作业 功能介绍 保存横向联邦学习作业 调用方法 请参见如何调用API。 URI PUT /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
使用TICS多方安全计算进行联合样本分布统计 场景描述 准备数据 发布数据集 创建样本分布统计作业 执行样本分布联合统计 数据优化 父主题: 纵向联邦建模场景
执行横向联邦学习作业 功能介绍 执行横向联邦学习作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id}/execute 表1 路径参数 参数 是否必选 参数类型 描述 project_id
获取横向联邦学习作业详情 功能介绍 获取横向联邦学习作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
查询多方安全计算作业列表 功能介绍 查询多方安全计算作业列表 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/sql-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String