AI开发平台MODELARTS-语言模型推理性能测试:动态benchmark

时间:2024-11-12 16:42:39

动态benchmark

本章节介绍如何进行动态benchmark验证。

  1. 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。

    方法一:使用公开数据集

    方法二:使用generate_dataset.py脚本生成数据集方法:

    客户通过业务数据,在generate_dataset.py脚本,指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。

    cd benchmark_tools 
    python generate_dataset.py --dataset custom_datasets.json --tokenizer /path/to/tokenizer \
    --min-input 100 --max-input 3600 --avg-input 1800 --std-input 500 \
    --min-output 40 --max-output 256 --avg-output 160 --std-output 30 --num-requests 1000

    generate_dataset.py脚本执行参数说明如下:

    • --dataset:数据集保存路径,如custom_datasets.json。
    • --tokenizer:tokenizer路径,可以是HuggingFace的权重路径。backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。
    • --min-input:输入tokens最小长度,可以根据实际需求设置。
    • --max-input:输入tokens最大长度,可以根据实际需求设置。
    • --avg-input:输入tokens长度平均值,可以根据实际需求设置。
    • --std-input:输入tokens长度方差,可以根据实际需求设置。
    • --min-output:最小输出tokens长度,可以根据实际需求设置。
    • --max-output:最大输出tokens长度,可以根据实际需求设置。
    • --avg-output:输出tokens长度平均值,可以根据实际需求设置。
    • --std-output:输出tokens长度标准差,可以根据实际需求设置。
    • --num-requests:输出数据集的数量,可以根据实际需求设置。
  2. 进入benchmark_tools目录下,切换一个conda环境。
    cd benchmark_tools 
    conda activate python-3.9.10
  3. 执行脚本benchmark_serving.py测试动态benchmark。具体操作命令如下,可以根据参数说明修改参数。
    python benchmark_serving.py --backend vllm --host ${docker_ip} --port 8080 --dataset custom_datasets.json --dataset-type custom \
    --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 \
    --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv
    • --backend:服务类型,如tgi,vllm,mindspore、openai。
    • --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。
    • --port:推理服务端口。
    • --dataset:数据集路径。
    • --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。
    • --tokenizer:tokenizer路径,可以是HuggingFace的权重路径,backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。
    • --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。
    • --num-prompts:某个频率下请求数,支持多个,如 10 100 100,数量需和--request-rate的数量对应。
    • --max-tokens:输入+输出限制的最大长度,模型启动参数--max-input-length值需要大于该值。
    • --max-prompt-tokens:输入限制的最大长度,推理时最大输入tokens数量,模型启动参数--max-total-tokens值需要大于该值,tokenizer建议带tokenizer.json的FastTokenizer。
    • --benchmark-csv:结果保存路径,如benchmark_serving.csv。
    • --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。
    • --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1。
  4. 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。
    图2 动态benchmark测试结果(示意图)
support.huaweicloud.com/bestpractice-modelarts/modelarts_llm_infer_90917.html