AI开发平台MODELARTS-语言模型推理性能测试:benchmark方法介绍

时间:2024-11-12 16:42:39

benchmark方法介绍

性能benchmark包括两部分。

  • 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。
  • 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。

性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。

代码目录如下:
benchmark_tools 
|--- modal_benchmark
    |--- modal_benchmark_parallel.py  # modal 评测静态性能脚本
    |--- utils.py
├── benchmark_parallel.py  # 评测静态性能脚本
├── benchmark_serving.py  # 评测动态性能脚本
├── generate_dataset.py   # 生成自定义数据集的脚本
├── benchmark_utils.py   # 工具函数集
├── benchmark.py         # 执行静态、动态性能评测脚本
├── requirements.txt       # 第三方依赖
support.huaweicloud.com/bestpractice-modelarts/modelarts_llm_infer_90917.html