推荐系统 RES-排序策略:因子分解机-FM

时间:2024-09-07 16:00:55

因子分解机-FM

因子分解机算法是一种基于矩阵分解的机器学习算法,能够自动进行二阶特征组合、学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。

表2 因子分解机参数说明

参数名称

说明

计算节点信息

用户可使用的计算资源种类。“8核|16GiB”“8核|32GiB”“8核|64GiB”“16核|128GiB”

训练数据的obs路径

特征工程排序样本预处理生成的训练数据所在的OBS路径。

即特征工程“排序样本预处理”结果保存路径下具体的训练文件路径。

测试数据的obs路径

特征工程排序样本预处理生成的测试数据所在的OBS路径。

即特征工程“排序样本预处理”结果保存路径下具体的测试文件路径。

特征值数量统计文件

该文件标识了每一个域下的特征数量,排序数据处理接口会生成这个文件,需要用户提供此文件完整路径。文件路径为特征工程排序样本预处理作业输出数据的结果保存路径的“fields_feature_size”目录下文件名称是part-00000开头的文件,需要用户提供文件的OBS路径。

最大迭代轮数

模型训练的最大迭代轮数,默认50。

提前终止训练轮数

在测试集上连续N轮迭代AUC无提高时,迭代停止,训练提前结束,默认5。

初始化方法

模型参数的初始化方法。

  • normal:正态分布

    平均值:默认0

    标准差:0.001

  • uniform :均匀分布

    最小值:默认-0.001,均匀分布的最小值,必须小于最大值。

    最大值:默认0.001,均匀分布的最大值,必须大于最小值。

  • xavier:

    初始化初始值为 均值为0,方差为 Var(wi)=1/nin 的均匀分布(高斯或者随机分布)。其中 nin 是该神经元的输入数目。

优化器类型

  • grad:梯度下降算法
    • 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。
  • adam:自适应矩估计算法
    结合AdaGrad和 RMS Prop两种优化算法的优点,对梯度的一阶矩估计(First Moment Estimation,即梯度的均值)和二阶矩估计(Second Moment Estimation,即梯度的未中心化的方差)进行综合考虑,依次计算出更新步长。
    • 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。
    • 数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。
  • adagrad:自适应梯度算法
    对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。
    • 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。
    • 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。
  • ftrl:Follow The Regularized Leader
    适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。
    • 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。
    • 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。
    • L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。
    • L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。

L2正则项系数

叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。

正则损失计算方式

正则损失计算当前有两种方式。

  • full:指针对全量参数计算。
  • batch:则仅针对当前批数据中出现的参数计算
    说明:

    batch模式计算速度快于full模式。

隐向量长度

分解后的特征向量的长度。默认10。

保存根路径

单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。

support.huaweicloud.com/usermanual-res/res_01_0022.html