AI开发平台MODELARTS-XGBoost:训练并保存模型
训练并保存模型
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import pandas as pd import xgboost as xgb from sklearn.model_selection import train_test_split # Prepare training data and setting parameters iris = pd.read_csv('/home/ma-user/work/iris.csv') X = iris.drop(['variety'],axis=1) y = iris[['variety']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234565) params = { 'booster': 'gbtree', 'objective': 'multi:softmax', 'num_class': 3, 'gamma': 0.1, 'max_depth': 6, 'lambda': 2, 'subsample': 0.7, 'colsample_bytree': 0.7, 'min_child_weight': 3, 'silent': 1, 'eta': 0.1, 'seed': 1000, 'nthread': 4, } plst = params.items() dtrain = xgb.DMatrix(X_train, y_train) num_rounds = 500 model = xgb.train(plst, dtrain, num_rounds) model.save_model('/tmp/xgboost.m') |
训练前请先下载iris.csv数据集,解压后上传至Notebook本地路径/home/ma-user/work/。iris.csv数据集下载地址:https://gist.github.com/netj/8836201。Notebook上传文件操作请参见上传本地文件至Notebook中。
保存完模型后,需要上传到OBS目录才能发布。发布时需要带上config.json配置和推理代码customize_service.py。config.json编写请参考模型配置文件编写说明,推理代码请参考推理代码。
- ModelArts模型训练_模型训练简介_如何训练模型
- ModelArts模型训练_创建训练作业_如何创建训练作业
- TMS开发_金蝶TMS系统_TMS技术系统_信息化管理_视频
- ModelArts模型训练_超参搜索简介_超参搜索算法
- ModelArts推理部署_纳管Atlas 500_边缘服务-华为云
- ModelArts是什么_AI开发平台_ModelArts功能
- AI训练加速存储_高性能数据存储_AI数据存储内存不足怎么办
- ModelArts推理部署_模型_AI应用来源-华为云
- ModelArts自定义镜像_自定义镜像简介_如何使用自定义镜像
- ModelArts开发环境_开发环境简介_开发环境怎么使用