AI开发平台MODELARTS-示例:创建DDP分布式训练(PyTorch+GPU):代码示例
时间:2024-08-16 20:38:57
代码示例
文件目录结构如下所示,将以下文件上传至OBS桶中:
code # 代码根目录 └─torch_ddp.py # PyTorch DDP训练代码文件 └─main.py # 使用PyTorch预置框架功能,通过mp.spawn命令启动训练的启动文件 └─torchlaunch.sh # 使用 自定义镜像 功能,通过torch.distributed.launch命令启动训练的启动文件 └─torchrun.sh # 使用自定义镜像功能,通过torch.distributed.run命令启动训练的启动文件
torch_ddp.py内容如下:
import os import torch import torch.distributed as dist import torch.nn as nn import torch.optim as optim from torch.nn.parallel import DistributedDataParallel as DDP # 用于通过 mp.spawn 启动 def init_from_arg(local_rank, base_rank, world_size, init_method): rank = base_rank + local_rank dist.init_process_group("nccl", rank=rank, init_method=init_method, world_size=world_size) ddp_train(local_rank) # 用于通过 torch.distributed.launch 或 torch.distributed.run 启动 def init_from_env(): dist.init_process_group(backend='nccl', init_method='env://') local_rank=int(os.environ["LOCAL_RANK"]) ddp_train(local_rank) def cleanup(): dist.destroy_process_group() class ToyModel(nn.Module): def __init__(self): super(ToyModel, self).__init__() self.net1 = nn.Linear(10, 10) self.relu = nn.ReLU() self.net2 = nn.Linear(10, 5) def forward(self, x): return self.net2(self.relu(self.net1(x))) def ddp_train(device_id): # create model and move it to GPU with id rank model = ToyModel().to(device_id) ddp_model = DDP(model, device_ids=[device_id]) loss_fn = nn.MSELoss() optimizer = optim.SGD(ddp_model.parameters(), lr=0.001) optimizer.zero_grad() outputs = ddp_model(torch.randn(20, 10)) labels = torch.randn(20, 5).to(device_id) loss_fn(outputs, labels).backward() optimizer.step() cleanup() if __name__ == "__main__": init_from_env()
main.py内容如下:
import argparse import torch import torch.multiprocessing as mp parser = argparse.ArgumentParser(description='ddp demo args') parser.add_argument('--world_size', type=int, required=True) parser.add_argument('--rank', type=int, required=True) parser.add_argument('--init_method', type=str, required=True) args, unknown = parser.parse_known_args() if __name__ == "__main__": n_gpus = torch.cuda.device_count() world_size = n_gpus * args.world_size base_rank = n_gpus * args.rank # 调用 DDP 示例代码中的启动函数 from torch_ddp import init_from_arg mp.spawn(init_from_arg, args=(base_rank, world_size, args.init_method), nprocs=n_gpus, join=True)
torchlaunch.sh内容如下:
#!/bin/bash # 系统默认环境变量,不建议修改 MASTER_HOST="$VC_WORKER_HOSTS" MASTER_ADDR="${VC_WORKER_HOSTS%%,*}" MASTER_PORT="6060" JOB_ID="1234" NNODES="$MA_NUM_HOSTS" NODE_RANK="$VC_TASK_INDEX" NGPUS_PER_NODE="$MA_NUM_GPUS" # 自定义环境变量,指定python脚本和参数 PYTHON_SCRIPT=${MA_JOB_DIR}/code/torch_ddp.py PYTHON_ARGS="" CMD="python -m torch.distributed.launch \ --nnodes=$NNODES \ --node_rank=$NODE_RANK \ --nproc_per_node=$NGPUS_PER_NODE \ --master_addr $MASTER_ADDR \ --master_port=$MASTER_PORT \ --use_env \ $PYTHON_SCRIPT \ $PYTHON_ARGS " echo $CMD $CMD
torchrun.sh内容如下:
PyTorch 2.1版本需要将“rdzv_backend”参数设置为“static:--rdzv_backend=static”。
#!/bin/bash # 系统默认环境变量,不建议修改 MASTER_HOST="$VC_WORKER_HOSTS" MASTER_ADDR="${VC_WORKER_HOSTS%%,*}" MASTER_PORT="6060" JOB_ID="1234" NNODES="$MA_NUM_HOSTS" NODE_RANK="$VC_TASK_INDEX" NGPUS_PER_NODE="$MA_NUM_GPUS" # 自定义环境变量,指定python脚本和参数 PYTHON_SCRIPT=${MA_JOB_DIR}/code/torch_ddp.py PYTHON_ARGS="" if [[ $NODE_RANK == 0 ]]; then EXT_ARGS="--rdzv_conf=is_host=1" else EXT_ARGS="" fi CMD="python -m torch.distributed.run \ --nnodes=$NNODES \ --node_rank=$NODE_RANK \ $EXT_ARGS \ --nproc_per_node=$NGPUS_PER_NODE \ --rdzv_id=$JOB_ID \ --rdzv_backend=c10d \ --rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT \ $PYTHON_SCRIPT \ $PYTHON_ARGS " echo $CMD $CMD
support.huaweicloud.com/usermanual-standard-modelarts/modelarts-distributed-0011.html
看了此文的人还看了
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格
推荐文章