MAPREDUCE服务 MRS-配置Spark SQL开启Adaptive Execution特性:配置场景

时间:2024-06-29 16:25:11

配置场景

Spark SQL Adaptive Execution特性用于使Spark SQL在运行过程中,根据中间结果优化后续执行流程,提高整体执行效率。当前已实现的特性如下:

  1. 自动设置shuffle partition数

    在启用Adaptive Execution特性前,Spark SQL根据spark.sql.shuffle.partitions配置指定shuffle时的partition个数。此种方法在一个应用中执行多种SQL查询时缺乏灵活性,无法保证所有场景下的性能合适。开启Adaptive Execution后,Spark SQL将自动为每个shuffle过程动态设置partition个数,而不是使用通用配置,使每次shuffle过程自动使用最合理的partition数。

  1. 动态调整执行计划

    在启用Adaptive Execution特性前,Spark SQL根据RBO和CBO的优化结果创建执行计划,此种方法忽略了数据在运行过程中的结果集变化。比如基于某个大表创建的视图,与其他大表join时,即便视图的结果集很小,也无法将执行计划调整为BroadcastJoin。启用Adaptive Execution特性后,Spark SQL能够在运行过程中根据前面stage的运行结果动态调整后续的执行计划,从而获得更好的执行性能。

  1. 自动处理数据倾斜

    在执行SQL语句时,若存在数据倾斜,可能导致单个executor内存溢出、任务执行缓慢等问题。启动Adaptive Execution特性后,Spark SQL能自动处理数据倾斜场景,对倾斜的分区,启动多个task进行处理,每个task读取若干个shuffle输出文件,再对这部分任务的Join结果进行Union操作,以达到消除数据倾斜的效果

support.huaweicloud.com/cmpntguide-mrs/mrs_01_1970.html