AI开发平台MODELARTS-训练的数据集预处理说明:微调数据集预处理参数说明

时间:2025-01-03 09:39:08

微调数据集预处理参数说明

微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下:

  • --input:原始数据集的存放路径。
  • --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)
  • --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。
  • --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。
  • --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。
    • GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
    • GeneralInstructionHandler:用于sft、lora微调时的数据预处理过程中,会对数据集full_prompt中的user_prompt进行mask操作。
  • --seq-length:要处理的最大seq length。
  • --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。
  • --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。
support.huaweicloud.com/bestpractice-modelarts/modelarts_llm_train_90979.html