数据治理中心 DataArts Studio-产品功能:数据架构:数据建模可视化、自动化、智能化

时间:2025-02-12 15:03:04

数据架构:数据建模可视化、自动化、智能化

DataArts Studio 数据架构践行 数据治理 方法论,将数据治理行为可视化,打通数据基础层到汇总层、集市层的数据处理链路,落地数据标准和数据资产,通过关系建模、维度建模实现数据标准化,通过统一指标平台建设,实现规范化指标体系,消除歧义、统一口径、统一计算逻辑,对外提供主题式数据查询与挖掘服务。

图2 数据架构

DataArts Studio数据架构主要包括以下三个部分:

  • 主题设计

    构建统一的数据分类体系,用于目录化管理所有业务数据,便于数据的归类,查找,评价,使用。通过分层架构对数据分类和定义,可帮助用户厘清数据资产,明确业务领域和业务对象的关联关系。

  • 数据标准

    构建统一的数据标准体系,数据标准流程化、系统化。用户可基于国家标准或行业标准,对每一行数据、每一个字段的具体取值进行标准化,从而提升数据质量和易用性。

  • 数据建模

    构建统一的数据模型体系,通过规范定义和数据建模,自顶向下构建企业数据分层体系,沉淀企业数据公共层和主题库,便于数据的流通、共享、创造、创新,提升数据使用效率,极大的减少数据冗余,混乱,隔离,不一致以及谬误等。

    DataArts Studio数据架构支持的数据建模方法有:

    • 关系建模

      关系建模是用实体关系(Entity Relationship,ER)模型描述企业业务,它在范式理论上符合3NF,出发点是整合数据,将各个系统中的数据以整个企业角度按主题进行相似性组合和合并,并进行一致性处理,为数据分析决策服务,但是并不能直接用于分析决策。

    • 维度建模

      维度建模是以维度建模理论为基础,构建总线矩阵、抽象出事实和维度,构建维度模型和事实模型,同时对报表需求进行抽象整理出相关指标体系,构建出汇总模型。

    • 数据集市

      又称为DM(Data Mart),DM面向展现层,数据有多级汇总,由一个特定的分析对象及其相关的统计指标组成的,向用户提供了以统计粒度为主题的所有统计数据。

support.huaweicloud.com/productdesc-dataartsstudio/dataartsstudio_07_005.html