AI开发平台MODELARTS-数据域迁移:CycleGan算子概述

时间:2024-04-13 07:51:34

CycleGan算子概述

基于CycleGAN用于生成域迁移的图像,即将一类图片转换成另一类图片,把X空间中的样本转换成Y空间中的样本。CycleGAN可以利用非成对数据进行训练。模型训练时运行支持两个输入,分别代表数据的原域和目标域,在训练结束时会生成所有原域向目标域迁移的图像。
图1 CycleGan算子
表1 CycleGan算子高级参数

参数名

默认值

参数说明

do_validation

True

是否进行数据校验,默认为True,表示数据生成前需要进行数据校验,否则只进行数据生成。

image_channel

3

生成图像的通道数。

image_height

256

图像相关参数:生成图像的高,大小需要是2的次方。

image_width

256

图像相关参数:生成图像的宽,大小需要是2的次方

batch_size

1

训练相关参数:批量训练样本个数。

max_epoch

100

训练相关参数:训练遍历数据集次数。

g_learning_rate

0.0001

训练相关参数:生成器训练学习率。

d_learning_rate

0.0001

训练相关参数:判别器训练学习率。

log_frequency

5

训练相关参数:日志打印频率(按step计数)。

save_frequency

5

训练相关参数:模型保存频率(按epoch计数)。

predict

False

是否进行推理预测,默认为False。如果设置True,需要在resume参数设置已经训练完成的模型的obs路径。

resume

empty

如果predict设置为True,需要填写Tensorflow模型文件的obs路径用于推理预测。当前仅支持“.pb”格式的模型。示例:obs://xxx/xxxx.pb。

默认值为empty。

support.huaweicloud.com/dataprocess-modelarts/dataprocess-modelarts-00011.html