AI开发平台MODELARTS-精度问题诊断:逐个替换模型,检测有问题的模型

时间:2024-12-09 20:36:14

逐个替换模型,检测有问题的模型

该方式主要是通过模型替换,先定位出具体哪个模型引入的误差,进一步诊断具体的模型中哪个算子或者操作导致效果问题,模型替换原理如下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。

图1 精度诊断流程

一般情况下,onnx模型推理的结果可以认为是标杆数据,单独替换某个onnx模型为MindSpore Lite模型,运行得到的结果再与标杆数据做对比,如果没有差异则说明pipeline的差异不是由当前替换的MindSpore Lite模型引入。

如果有差异,则说明当前模型与原始onnx的结果存在差异。依次单独替换onnx模型为对应的MindSpore Lite模型,从而定位出有差异的模型。在模型初始化的代码块已经添加了use_ascend参数,修改参考如下:

图2 代码修改

以上述现象为例,通过修改use_ascend参数值对模型替换,可以发现:当text_encoder模型为onnx模型,其余模型为mindir模型时,能够得到和标杆数据相同的输出,因此可以判断出转换得到的text_encoder模型是产生pipeline精度误差的根因。通过下一小节可以进一步确认模型精度的差异。

support.huaweicloud.com/bestpractice-modelarts/modelarts_10_2008.html