AI开发平台MODELARTS-查看训练作业资源占用情况:如何提高训练作业资源利用率

时间:2024-09-27 15:06:32

如何提高训练作业资源利用率

  • 适当增大batch_size:较大的batch_size可以让GPU/NPU计算单元获得更高的利用率,但是也要根据实际情况来选择batch_size,防止batch_YLLsize过大导致内存溢出。
  • 提升数据读取的效率:如果读取一个batch数据的时间要长于GPU/NPU计算一个batch的时间,就有可能出现GPU/NPU利用率上下浮动的情况。建议优化数据读取和数据增强的性能,例如将数据读取并行化,或者使用NVIDIA Data Loading Library(DALI)等工具提高数据增强的速度。
  • 模型保存不要太频繁:模型保存操作一般会阻塞训练,如果模型较大,并且较频繁地进行保存,就会影响GPU/NPU利用率。同理,其他非GPU/NPU操作尽量不要阻塞训练主进程太多的时间,如日志打印,保存训练指标信息等。
support.huaweicloud.com/usermanual-standard-modelarts/develop-modelarts-0015.html